Studies on Gelsemium Alkaloids. Total Synthesis of $(+)$-Koumine, (+)-Taberpsychine, and (+)-Koumidine

Philip Magnus, ${ }^{*, 1}$ Benjamin Mugrage, Mark R. DeLuca, and Gary A. Cain
Contribution from the Department of Chemistry, Indiana University. Bloomington. Indiana 47405. Received December 18. 1989

Abstract

The total synthesis of the Gelsemium alkaloids (+)-koumine (2), (+)-taberpsychine (4), and (+)-koumidine (50) has been accomplished starting from (S)-(-)-tryptophan (21). All the synthetic alkaloids are antipodal to the natural compounds. N^{\prime}-Benzyltryptophan ((-)-22) was methylated to give 23 which was reductively benzylated to provide (-)-25. Pictet-Spengler condensation of (-)-25 with 2 -ketoglutaric acid followed by esterification gave a mixture of diastereomeric methyl esters $27 / 28$. Exposure of (+)-27 and (-)-28 to Dieckmann cyclization conditions provided (+)-29 and (-)-29, respectively. Thus starting from a single enantiomer of tryptophan both antipodes of the tetracyclic β-ketoesters $(+)-29 /(-)-29$ are available. Since $(+)-\mathbf{2 9}$ was the more readily available antipode, subsequent reactions were conducted with this compound. Conversion of (+)-29 into $(+)-31$ followed conventional lines. N-Alkylation of $(+)-31$ with propargyl bromide gave $(+)-33$ which was converted into $(+)-36$ by treatment with $t-\mathrm{BuMe}_{2} \mathrm{SiOTf}^{2} \mathrm{Et}_{3} \mathrm{~N}, n-\mathrm{BuLi} / \mathrm{ClCO}_{2} \mathrm{Me}$, and LiBF_{4}. Exposure of $(+)-36$ to pyrrolidine/ trifluoroacetic acid gave the (Z) - and (E)-quinuclidines $(+)-37$ and $(+)-38$. Methylenation of 38 with Tebbe's reagent gave 39. Both E and Z isomers were taken through the series of transformations to give $43,45,47$, and 49 and $44,46,48$, and 50. The structures of $(+)-37$ and $(+)-43$ were conclusively established by single-crystal X -ray crystallography. Fragmentation of 49 with methyl chloroformate gave 51 which was reduced with LiAlH_{4} to give (+)-taberpsychine (4). Treatment of 47 with methyl chloroformate gave the 18 -hydroxytaberpsychine derivative 52 which was reduced with LiAlH_{4} to give 53 . Similarly 48 gave 55. When the Z isomer 55 was exposed to the Mitsunubo conditions, (+)-koumine (2) was formed ($40 \%, 72 \%$ based upon recovered 55). The E isomer 53 gave (+)-koumine (2) in lower yields at a much reduced rate.

The alkaloids of the Gelsemium species are unusual in that none of them have succumbed to total synthesis. ${ }^{2}$ The two most well-known members of this class of indole alkaloids are (+)gelsemine (1) ${ }^{3}$ and (-)-koumine (2). ${ }^{4} \quad$ Both alkaloids resisted classical structural elucidation by degradation, and eventually their structures were revealed through single-crystal X-ray crystallography. ${ }^{5}$ The absolute configuration of (- -)-koumine was established by a partial synthesis from vobasine. ${ }^{6}$

1 Gelsemine

(-1.2 Koumine
(1) Address correspondence to the author at the Department of Chemistry, University of Texas at Austin, Austin, Texas 78712 .
(2) Joule, J. A. In The Monoterpene Indole Alkaloids; Interscience Publ. John Wiley and Sons, Inc.: New York, 1983; Heterocyclic Compounds, Vol. 25, Part 4, Saxton, J. E., Ed.; Chapter V, The Sarpagine-Ajmaline-Akuammicine Group, pp 201-259.
(3) Moore, C. W. J. Chem. Soc. 1919, 2223. Wenkert, E.; Chang, C.- J.; Clouse, A. O.; Cochran, D. W. J. Chem. Soc., Chem. Commun. 1970, 961. Wenkert, E.; Chang, C.J.; Cochran, D. W.; Pellicciari, R. Experientia 1972, 28, 377. Lovell, F. M.; Pepinsky, P.; Wilson, A. J. C. Tetrahedron Lett. 1969, 4, 1. Conroy, M.; Chakrabarti, J. K. Tetrahedron Lett. 1969, 4, 6. Moore, C. W. J. Chem. Soc. 1911, 1231. Goutarel, R.; Janot, M.-M.; Prelog, V.; Sneeden, R. P. A.; Taylor, W. I. Helv. Chim. Acta 1951, 34, 1139. Marion, L.; Sargeant, K. J. Am. Chem. Soc. 1956, 78, 5127. Habgood, T.; Marion, L. Can. J. Chem. 1955, 33, 604. Wichl, M.; Nikiforov, A.; Sponer, S.; Jentzsch, K. Monatsh. 1973, 104, 87. For references to approaches toward the synthesis of gelsemine see: Choi, J.-K.; Ha, D.-C.; Hart, D. J.; Lee, C.-S.; Ramesh. S.; Wu, S. J. Org. Chem. 1989, 54, 279. Stork, G.; Krafft, M. E.; Biller, S. A. Tetrahedron Lett. 1987, 28, 1035. Stork, G.; Nakatani, K. Tetrahedron Lett. 1988, 29, 2283. Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52, 4130 . Earley, W. G.; Jacobsen, E. J.; Meier, G. P.; Oh, T.; Overman, L. E. Tetrahedron Lett. 1988, 29, 3781. Earley, W. G.; Oh, T.; Overman, L. E. Tetrahedron Lett. 1988, 29, 3785 . Fleming, I.; Loreto, M. A.; Michael, J. P.; Wallace, I. H. M. Tetrahedron Lett. 1982, 23, 2053. Clark, C.; Fleming, 1.; Fortunak, J. M. D.; Gallagher, P. T.; Honan, M. C.; Mann, A.; Nubling, C. O.; Raithby, P. R.; Wolff, J. J. Tetrahedron Lett. 1988 , 44, 3991. Vijn, R. J.; Hiemstra, H.; Kok, J. J.; Knotter, M.; Speckamp, W. N. Tetrahedron Lett. 1987, 43, 5019 . Hiemsrta, H.; Vijn, R. J.; Speckamp, W. N. J. Org. Chem. 1988, 53, 3884.
(4) For a comprehensive recent review of gelsemium alkaloids including koumine see: Liu, Z.-J.; Lu, R.-R. Gelsemium Alkaloids, In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1988; Vol. 33, Chapter 2, p 83.
(5) Khuong-Luu, F.; Chiaroni, A.; Riche, C. Tetrahedron Lett. 1981, 22, 733. Liu, C.; Wang, Q.; Wang, C. J. Am. Chem. Soc. 1981, 103, 4634

Scheme I

Scheme II

Koumine (2) was isolated in 1931 from the Chinese plant Kou-wen, later identified as Gelsemium elegans Benth. ${ }^{7}$ Recent clinical experiments with Kou-wen on malignant tumors have given encouraging results, and good analgesic activity with no additive side effects has been reported. ${ }^{8}$

[^0]
Scheme III

Retrosynthetic and Biogenetic Considerations

Our retrosynthetic analysis of koumine (2) was based upon the recognition that the central part of the complex multiple-ring system contains an eight-membered ring and that crucial car-bon-carbon bonds can, in principle, be made by entropically favored transannular reactions. A plausible precursor to $\mathbf{2}$ is the allylic alcohol 3 which when rewritten can be recognized as 18 hydroxyanhydrovobasindiol. Although 3 is not a known natural product, (- -anhydrovobasindiol or (-)-taberpsychine (4) is a naturally occurring indole alkaloid. ${ }^{9}$ An intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction should be capable of converting 3 into koumine (2). Fragmentation of 5 induced by electrophilic attack on the quinuclidine nitrogen atom should generate the iminium ion $5 a$ which upon intramolecular trapping by the primary hydroxyl group provides a viable route to $3 / 4$. The compound 6 is a known indole alkaloid called koumidine, ${ }^{10}$ whereas the 18 -hydroxy derivative 5 is not, as yet, a natural product. The compound 5 should be available from the ketone 7 by a stereospecific reductive hydroxymethylation sequence. The quinuclidine core structure of 7 should be accessible from 8 by intramolecular conjugate addition of the derived ketone enolate to the electrophilic acetylenic ester. At this point we can relate 8 to the parent 6,10 -imino- 5 H cyclooct [b]indole ring system 9 which is available as a single enantiomer from S-(-)-tryptophan.

Since we initiated research on the total synthesis of koumine (2), several important papers have appeared in the literature that have a direct bearing on the retrosynthetic scheme shown above and, more significantly, imply, in a structural sense, a biogenetic relationship between koumine (2) and the various indole alkaloids of the structural types shown in Scheme I. A partial synthesis ${ }^{6}$ of koumine (2) was reported in 1986. Vobasine (10) on reduction with LiAlH_{4} gave vobasindiol (11) which was dehydrated with aqueous sulfuric acid to provide taberpsychine (4). Allylic oxidation of 4 using $\mathrm{SeO}_{2} / \mathrm{H}_{2} \mathrm{O}_{2}$ gave koumine albeit in modest yield (25%), Scheme II. In a similar vein Sakai ${ }^{11,12}$ has converted 18-hydroxygardnerine (12) into the 11-methoxy analogue of koumine 17 by using the sequence of transformations shown in Scheme III. Fragmentation of 12, induced by methyl chloroformate, gave 13 (cf. 3), whose derived acetate 14 on treatment with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} / \mathrm{NaH}$ underwent a transannular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization to give 15. Reduction of 15 with LiAlH_{4} gave 16 , which on reintroduction of the imine functionality with $\mathrm{Pb}(\mathrm{OAc})_{4}$ gave 17 .

[^1]
Scheme IV

Scheme V

Both Schemes II and III closely parallel a biogenetic sequence proposed by Lounasmaa and Koskinen. ${ }^{13}$

There are no reported total syntheses of gelsemium or sarpagine alkaloids 5/6. The only successful endeavors have involved the ajmaline family of indole alkaloids. ${ }^{14}$

Results

The first objective was to establish an efficient route to the tetracyclic adduct 9 , or a N^{1}-protected derivative, preferably as a single enantiomer. While both Yoneda ${ }^{15}$ and more recently Cook 16 have reported the synthesis of 20 , a number of curious and unexplained facts appeared in their work. For example, Yoneda claims that the cis isomer 19 did not undergo Dieckmann cyclization, whereas the trans isomer 18 cyclizes to give $\mathbf{2 0}$. This work was conducted in the racemic series. In the enantiomerically pure series derived from D-(+ -tryptophan Cook claims that under Dieckmann cyclization conditions ($\mathrm{NaH} / \mathrm{PhMe} / \mathrm{MeOH}$, heated at reflux) 18 cyclizes to give 20 , whereas the cis compound 19 first epimerizes at $\mathrm{C}-3$ to the trans compound 18 before cyclizing to the antipode of $\mathbf{2 0}$ (Scheme IV).

The particular conditions of the Dieckmann cyclization are ones that would be expected to cause equilibration of any carbaniónic intermediates. Finally these workers also report that the trans isomer 18 cyclizes to give 20 faster than the cis isomer $\mathbf{1 9}$ cyclizes to give antipodal 20. Before discussing our own results, which contradict the above, an a priori analysis of this type problem is instructive. In a general sense, if we start with two compounds whose stereochemical relationship is diastereomeric with one stereogenic center fixed (nonepimerizable and antipodal) and the other stereogenic center epimerizable, the following analysis is applicable, Scheme V.

After epimerization the diastereomers (now antipodal/mirror images) can undergo a further transformation to products which are antipodal. The rate of the last transformation must, by

[^2]
Scheme VI

definition, be the same. Therefore, if the last step is the slowest, both diastereomers will be transformed at the same rate. Whereas if epimerization is the slowest step, naturally it will be overall rate determining. Consequently if the diastereomers are transformed to antipodal products at a different rate, the rate-determining step is epimerization. Applying this argument to the specific problem of the conversion of $\mathbf{1 8} / \mathbf{1 9}$ into $\mathbf{2 0}$ and its mirror image, since the rates of conversion of $18 / 19$ into 20 are different, the rate-determining step is $\mathrm{C}-3$ epimerization. The trans compound 18 cannot undergo Dieckmann cyclization to 20 directly without the formation of an azabicyclo[3.3.1] inside-outside system, which is obviously impossible, especially under thermodynamic control. The cis compound 19, in the absence of other steric effects, should be the thermodynamically more stable diastereomer since the $\mathrm{C}-3$ $\mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{C}-1 \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ substituents can occupy a 1,3-diequatorial relationship, although $\mathrm{A}^{(1,3)}$ strain between the N^{1}-alkyl group and the C-1 propionate may favor the trans isomer. Regardless, only the 1,3-diaxial conformer of the cis isomer can undergo the Dieckmann cyclization.
(S)-(-)-Tryptophan 21 was converted into its N^{1}-benzyl derivative 22 (95%) by treatment with sodamide (2.2 equiv)/ $\mathrm{PhCH}_{2} \mathrm{Cl}$ in liquid ammonia. ${ }^{17}$ Conversion of 22 into the methyl ester $23(68 \%)$ (dry $\mathrm{HCl} / \mathrm{MeOH})^{17,18}$ followed by condensation with benzaldehyde ($\mathrm{PhH} / \mathrm{Na}_{2} \mathrm{SO}_{4}$) and reduction of the imine 24 with sodium borohydride in methanol gave (-)- N, N^{\prime}-dibenzyltryptophan methyl ester 25 (95% from 23). By using Cooks ${ }^{19}$ recent improvement of the Pictet-Spengler condensation, 25 was treated with 2 -ketoglutaric acid/benzene at reflux with provision for the removal of water and the resulting acids $\mathbf{2 6}$ (67%) esterified ($\mathrm{MeOH} / \mathrm{ClSiMe}_{3}$) to give a mixture of diastereomeric methyl esters 27/28 (ca. 2:1) (80\%) (Scheme VI).
While 27 and 28 could be separated by chromatography over silica gel, they were more conveniently separated on a large scale by fractional crystallization from methanol. The major diastereomer 27 was isolated in 58% yield. The minor diastereomer 28 could be isolated in a pure form by chromatography of the mother liquors. Assignment of the stereochemistry was initially based upon extensive studies by the Sakai group ${ }^{20}$ and ${ }^{13} \mathrm{C}$ NMR data comparisons with data reported by Bailey and Hollinshead. ${ }^{21}$ Typically N-benzylmethylene carbons for 1,3 -cis disubstituted tetrahydro- β-carbolines resonate about 7 ppm downfield of the corresponding peaks in the trans isomers. The major isomer 27 exhibited an α-amino benzylic methylene ${ }^{13} \mathrm{C}$ resonance at 52.63 ppm , while the minor isomer 28 resonated at 61.15 ppm .
Treatment of 28 with $\mathrm{NaH} / \mathrm{PhMe} / \mathrm{MeOH}$ heated at reflux gave (+)-29 (88%) in 5 h , whereas the trans isomer 27 required 15 h to be converted into (-)-29(72\%). The antipodal relationship between 29 and 30 is demonstrated by rotational data, $29[\alpha]_{D}{ }^{2 S}$

[^3]Scheme VII

Scheme VIII

$+160^{\circ}\left(c 0.985, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 30[\alpha]_{\mathrm{D}}{ }^{25}-158^{\circ}\left(c 0.990, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The enantiomeric purities of 29 and 30 were confirmed by an ${ }^{1} \mathrm{H}$ NMR study ${ }^{22}$ of these compounds in the presence of the chiral solvating agent (S)-(+)-2,2,2-trifluoro-1-(9-anthryl)ethanol ${ }^{23}$ in benzene- d_{6} (Scheme VII).

Beginning with a single enantiomer of tryptophan both enantiomers of the tetracyclic β-ketoester (+)-29/(-)-29 are available. The absolute configuration shown for (-)-29 corresponds to the natural configuration for koumine. The above results are in agreement with the analysis described in Scheme V and represents experimental results that were reproduced many times by different workers. We have taken both antipodes $(+)-29$ and (-)-29 through the entire sequence but will only describe the so-called (+)-unnatural series in the text since this material was more readily available.

The major enantiomer (+)-29 was hydrolyzed and decarboxylated under standard conditions ${ }^{24}$ in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}$ at reflux. Although the reaction was very slow (7 days), the ketone $(+)-30$ was isolated in 99% yield. Catalytic transfer hydrogenation ${ }^{25}$ with $10 \% \mathrm{Pd} / \mathrm{C}$ in 88% formic acid cleanly gave the monodebenzylated ketone $(+)-31$. In reverse order, $(-)-29$ was exposed to the catalytic transfer hydrogenation conditions to give $(-)-32(72 \%)$. Decarboxymethylation of (-)- 32 gave (-)-31 (86%). The optical purity of each enantiomer was retained through both sequences, $(+)-31[\alpha]_{D}{ }^{23}+104^{\circ}\left(c 1.05 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and $(-)-31[\alpha]_{\mathrm{D}}{ }^{28}$ -98° ($c 1.08 \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Decarboxylation followed by debenzylation proceeds in an overall yield of 84%, whereas the reverse sequence proceeds in 62% overall yield. Both enantiomeric forms of 31 are available and for the major enantiomer (+)-31, in 20% overall yield through 10 steps from (S)-(-)-tryptophan. Correspondingly starting from (R)-(+)-tryptophan, $(-)-31$ (natural series) is the major enantiomer (Scheme VIII).

The next phase of the synthesis involved alkylation of the bridged N -atom with a linear C_{4} unit and the formation of the quinuclidine ring system. While we looked at a number of variations for the construction of the quinuclidine framework, only one route was successful.

N-Alkylation of the amine (+)-31 with propargyl bromide/ EtOH^{26} gave the propargylamine (+)-33(60\%). Treatment of

[^4]
Scheme IX

Scheme X

$(+)-33$ with t - $\mathrm{BuMe}_{2} \mathrm{SiOTf} / \mathrm{NEt}_{3} / \mathrm{O}^{\circ} \mathrm{C}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the enol ether $(+)-34(82 \%)$. Deprotonation of $(+)-34$ with n $\mathrm{BuLi} / \mathrm{THF} /-78{ }^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$ followed by quenching the soformed acetylide anion with methyl chloroformate gave the α, β unsaturated acetylenic ester (+)- 35 in 76% yield after purification.

Initially we attempted a fluoride ion mediated deprotection of the dimethyl tert-butylsilyl enol ether 35 expecting that the enolate would readily be trapped by the α, β-unsaturated acetylenic ester to give the quinuclidines $37 / 38$. Treatment of 35 with a wide range of reagents that are well-precedented to deprotect trialkylsilyl enol ethers, KF Triton B, ${ }^{27} \mathrm{KF} 18$-crown-6, KF benzyltriethylammonium chloride, $\mathrm{CsF}_{1}{ }^{28}$ naked fluoride, $\mathrm{KF} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ benzyltriethylammonium chloride, ${ }^{29} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2},{ }^{30}$ and tetrabutylammonium fluoride ${ }^{31}$ gave reaction mixtures that typically consisted of a mixture of the ketone 36 and the required quinuclidine, Z and E olefinic ester isomers $37 / 38$ but always in very poor yields and difficult to purify, Scheme IX.

Apparently the nonenolizable carbonyl group in $37 / 38$ causes a retro-Dieckmann fragmentation process to take place under the conditions used to release the enolate anion from 35, Scheme X.

Since the keto ester 36 was readily prepared by treatment of 35 with $\mathrm{LiBF}_{4} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}^{32}$ we exposed 36 to a number of conditions (both acidic and basic) to promote intramolecular Michael cyclization to give $37 / 38$. A wide variety of reagents such as DABCO, DBU, 2,6-di-tert-butyl-4-methylpyridine, $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{AgOAc}$, camphorsulfonic acid, $p-\mathrm{TsOH}$, and TiCl_{4} were ineffective, but eventually it was found that 1.2 equivs of lithium diisopropylamide/THF/-78 ${ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ over 2 days gave 37/38 as a separable $1: 1$ mixture of E and $Z \alpha, \beta$-unsaturated esters in 60% yield after purification. The assignment of E and Z isomers was readily made by comparison of their ${ }^{1} \mathrm{H}$ NMR spectra. The Z isomer (+)- 37 exhibited two doublets of doublets at 4.45 and 4.20 ppm ($J_{\mathrm{s}}=19.9,2.2$ and $19.9,2.6 \mathrm{~Hz}$), while the unshielded C-21 protons of the E isomer 38 appeared as a broad singlet at 3.90 ppm . Similarly the C-15 proton of the E

[^5]

Figure 1.

Scheme XI

isomer $(+)$ - 38 appeared as a multiplet at $4.65-4.64 \mathrm{ppm}$, while the unshielded $\mathrm{C}-15$ proton in the Z isomer (+)-37 appeared at $3.06-3.05 \mathrm{ppm}$. These assignments were confirmed by a singlecrystal X-ray crystallographic structure determination of the Z isomer $(+)-37$. Figure 1 shows an ORTEP representation. ${ }^{33}$ While both $37 / 38$ were available, it was found that the reaction (LDA/THF/-78 ${ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$) did not scale-up satisfactorily. Eventually it was discovered that treatment of $(-)-36$ with pyrrolidine (0.2 equiv) and trifluoroacetic acid (0.2 equiv) in dry benzene heated at reflux for 19 h gave $37 / 38$ (12% and 68%). It should be noted that 37 equilibrates to a mixture of $37 / 38$ on standing in solution, as does 38.

At this stage we needed to homologate the carbonyl group in 37/38 to a hydroxymethyl group in a stereospecific manner. Both conventional Wittig methylenation and the Corey dimethylsulfoxonium methylide ${ }^{34}$ did not produce any useful results. Recently transition-metal carbenoid complexes have gained wide spread use as methylenating agents for base sensitive substrates. Treatment of 38 with Lombardo's reagent ${ }^{35}\left(\mathrm{TiCl}_{4} / \mathrm{Zn} / \mathrm{CH}_{2} \mathrm{Br}_{2}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 1 h at $20^{\circ} \mathrm{C}$ gave a mixture of $39(24 \%)$ and unexpectedly $40(20 \%)$. It is possible that the cyclopropane is produced from a Simmons-Smith type reagent, $\mathrm{BrCH}_{2} \mathrm{ZnBr}$ present in the Lombardo reagent. Particularly problematic in this procedure, especially on a large scale ($>1 \mathrm{~g}$) was the lack of reliable reproducibility of the yields of 39 . Using the Takai procedure ${ }^{36}$ (replacing $\mathrm{CH}_{2} \mathrm{Br}_{2}$ by $\mathrm{CH}_{2} \mathrm{I}_{2}$) gave $39 / 40$ (1:1), and if the Lombardo reagent was prepared by using a $\mathrm{Zn}-\mathrm{Cu}$ couple
(33) The complete details of the single-crystal X-ray structural determination of $(+)-37$ and $(+)-43$ may be obtained from Dr. John C. Huffman, Molecular Structure Center, Indiana University, Bloomington, IN 47405. Please ask for structure report numbers 87152 and 88047 , respectively.
(34) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
(35) Lombardo, L. Tetrahedron Lett. 1982, 23, 4293.
(36) Takai, K.; Motta, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1978, 19, 2417. Hibino, J.; Okazoe, T.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, 5579.

$2-(+)-44\left(R=\mathrm{CO}_{2} \mathrm{Me} . \mathrm{R}^{\prime}=\mathrm{Bn}\right)$
Z-(+)-46($\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$. $\mathrm{R}^{\prime}=\mathrm{Bn}$)
$Z-(+)-48\left(R=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H}\right)$
Z-(+)-50(R=Me.R'=H)(+)-Koumidine

Figure 2.

rather than Zn dust the cyclopropanol 41 was the major product (Scheme XI).

Since the ill-defined Lombardo reagent did not provide a reproducible supply of 39 , we examined the Tebbe reagent. ${ }^{37}$ The preparation of the Tebbe reagent was best carried out by using the Grubbs procedure. ${ }^{38}$ Treatment of 38 with the Tebbe reagent in THF gave the required exo-methylene adduct 39 (63\%) and the methyl ketone 42 (15%) (after acidic workup). This procedure was reproducible and provided 39 in gram quantities.

Hydroboration of 39 proved to be particularly difficult; however, it was eventually found that treatment of 39 with a freshly prepared solution of diisoamylborane in THF at $0^{\circ} \mathrm{C} / 12 \mathrm{~h}$ gave 43 (69\%). The stereochemistry of the newly introduced hydroxymethyl group was determined by single-crystal X-ray crystallography (Figure 2). ${ }^{33}$ Application of the same methylenating/hydroborating sequence to 37 gave 44 . Reduction of $(E)-43$ with DIBAL-H/PhMe at room temperature gave 45 (89\%). Similarly 44 gave 46 (92%). The indole N^{\prime}-benzyl protecting group in 45 was removed reductively by treatment with Na / $\mathrm{NH}_{3} /-78{ }^{\circ} \mathrm{C}$ to give 47 (81\%). Likewise 46 gave 48 (91\%) which is the 18 -hydroxy derivative of $(+)$-koumidine (50). When 46 was treated with $\mathrm{Na} / \mathrm{NH}_{3}$ at $-30^{\circ} \mathrm{C}\left(\mathrm{cf} .-78^{\circ} \mathrm{C}\right.$) the $\mathrm{C}-18$ hydrogenolysis product (+)-koumidine ($\mathbf{5 0}$) was isolated in 95% yield. Comparison with an authentic sample of (-)-koumidine (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, TLC, $[\alpha]_{\mathrm{D}}$) demonstrated their structural identity and antipodal relationship and furthermore confirms Cordell's reassignment of the stereochemistry of the ethylidene group. ${ }^{10}$ Similarly 47 gave 49 (63\%). Fragmentation of the (E)-ethylidene isomer 49 by treatment with methyl chloroformate $/ \mathrm{MeOH} / \mathrm{NaHCO}_{3}$ gave 51 (52%), presumably via the extended iminium ion 49a (Scheme XII).

Reduction of 51 with $\mathrm{LiAlH}_{4} / \mathrm{THF} /$ heated at reflux 18 h , gave $(+)$-taberpsychine (4) (67%). Comparison with an authentic sample of (-)-taberpsychine (${ }^{1} \mathrm{H}$ NMR, IR, HRMS, $[\alpha]_{\mathrm{D}}$, and TLC) demonstrated their structural identity and antipodal relationship. ${ }^{9}$ Since (-)-taberpsychine has been converted into $(-)$-koumine (2) by treatment with $\mathrm{SeO}_{2} / \mathrm{H}_{2} \mathrm{O}_{2}$ (see Scheme II)

[^6]Scheme XII

(.). 4 ($\mathrm{R}=\mathrm{Me}$) Taberpsychine
$51\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$
$(+)-4(R=M e)$ Taberpsychine
(.).4(R=Me)Taberpsychine

Scheme XIII

this constitutes a formal synthesis of $(+)$-koumine, but since the conversion of $\mathbf{4}$ into 2 only proceeds in very modest yields (25%) we carried the 18 -hydroxy derivatives 47 and 48 through to $(+)$-koumine. Treatment of 47 with $\mathrm{MeO}_{2} \mathrm{CCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ room temperature/ 5 h gave the 18-hydroxytaberpsychine derivative 52 ($61 \%, 93 \%$ based upon recovered starting material). Reduction of 52 with $\mathrm{LiAlH}_{4} / \mathrm{THF} /$ reflux 3 h gave (+)-18-hydroxytaberpsychine (53) (78\%). Similarly the Z isomer $\mathbf{4 8}$ gave 55 via 54 (33%). When the Z isomer 55 was treated with diethyl azodicarboxylate $/ \mathrm{Ph}_{3} \mathrm{P} /$ imidazole(catalyst) $/ \mathrm{NaH}$ in dry THF heated at reflux it was cleanly converted into (+)-koumine (2) ($40 \%, 72 \%$ based upon recovered 55). Surprisingly when the E isomer 53 was exposed to the above Mitsunubo conditions, $(+$)-koumine (2) was formed in lower yields (34\%, no recovered starting material) and at a much reduced rate. Substantial degradation to intractable byproducts was observed. While the effect of double bond geometry on the rate and product distribution in the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction has not been previously considered, in this particular situation it is a factor that influences the relative $\Delta G^{* \prime}$'s between the transition states leading to koumine (Scheme XIII).

In the Z isomer 55 the developing π-system is antiperiplanar to the indole 2,3 -double bond, whereas in the E isomer 53 the relationship between the developing vinyl group and the 2,3 -double bond can be viewed as synclinal. Obviously we cannot discount that the different rates of cyclization of $\mathbf{5 3}$ and $\mathbf{5 5}$ to koumine is a reflection of the ease of formation of the phosphonium ion leaving group in the Mitsunubo reaction and therefore peculiar to the specific substrates $\mathbf{5 3 / 5 5}$. Nevertheless there must be energy differences between synclinal and antiperiplanar transition states in the $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reaction in the same way that there are for aldol reactions and related transformations. It should be instructive to investigate this possible stereoelectronic effect in simpler substrates (intra- and intermolecular) to ascertain whether or not it is a real factor in coming to a more complete understanding of the often controversial $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction mechanism. We are currently starting this study. ${ }^{41}$
(41) Preliminary communication: Magnus, P.; Mugrage, B.; DeLuca, M.; Cain, G. A. J. Am. Chem. Soc. 1989, Ill, 786.

Experimental Section

Melting points were taken on a Thomas-Hoover capillary tube apparatus and are uncorrected. Boiling points are uncorrected. Optical rotations were performed on a Perkin-Elmer 241 polarimeter. Infrared spectra were recorded on a Perkin-Elmer 298 grating spectrometer either neat, as Nujol mulls, or in CHCl_{3} as indicated. Ultraviolet spectra were recorded on a Perkin-Elmer 554 spectrometer in the indicated solvents. Proton NMR spectra were recorded either on a Nicolet NT-360 360 MHz , a Varian EM 39090 MHz , a Bruker AM 500500 MHz or a Varian XL-300 300 MHz spectrometer as indicated, in CDCl_{3}, and are reported in ppm downfield from TMS. Carbon-13 NMR spectra were recorded on a Varian XL-300 spectrometer at 75 MHz in CDCl_{3} and are also reported in ppm downfield from TMS. Mass spectra were recorded on a Kratos MS 80 spectrometer. Elemental analyses were performed by Midwest Microlab in Indianapolis, IN. Routine monitoring of reactions were performed by using Merck $60 \mathrm{~F}_{254}$ silica gel, aluminum-backed TLC plates. Preparative-layer chromatography was performed by using Merck $60 \mathrm{~F}_{254}$ silica gel, glass supported plates. Flash column chromatography was performed with the indicated solvents on Merck $60 \mathrm{H}_{254}$ silica gel.

Air- and moisture-sensitive reactions were carried out under usual inert atmosphere techniques. Reactions requiring anhydrous conditions were performed in glassware dried by a Bunsen flame or in an oven at $140^{\circ} \mathrm{C}$, then cooled under argon, and performed under a blanket of argon. Solvents and commercial reagents were dried and purified before use: $\mathrm{Et}_{2} \mathrm{O}$ and THF were distilled from sodium benzophenone ketyl; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{Et}_{3} \mathrm{~N}$, DMSO, pyrrolidine, tert-butyl alcohol, diisopropylamine, benzene, toluene, and hexanes were distilled from calcium hydride under argon.
(S)-(-)- N^{\prime}-Benzyltryptophan (22). Following the reported procedure, ${ }^{17}$ metallic Na ($10.4 \mathrm{~g}, 452$ mmol) was added, in small pieces, to liquid $\mathrm{NH}_{3}(1000 \mathrm{~mL})$ containing $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~g}, 1.5 \mathrm{mmol})$ cooled to $-78^{\circ} \mathrm{C}$. After the mixture had turned grayish-black, (S)-(-)-tryptophan (21) ($40.0 \mathrm{~g}, 196 \mathrm{mmol}$) was washed into the solution with a minimum of anhydrous $\mathrm{Et}_{2} \mathrm{O}$. The mixture was allowed to come to reflux. After 20 min freshly distilled benzyl chloride ($22.5 \mathrm{~mL}, 196$ mmol) was added dropwise over a $10-\mathrm{min}$ period, and the mixture stirred overnight to allow the solvent to evaporate. The resulting solid was dissolved in hot water (1500 mL) and precipitated by the addition of glacial acetic acid (70 mL). The solid was filtered and washed with water $(400 \mathrm{~mL}), 50 \% \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL}), 95 \% \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{~mL})$. The crude product was dried for 3 days over silica gel at 0.1 mmHg , to yield the crude product 22 ($54.8 \mathrm{~g}, 95 \%$) as a tan solid: mp 208-211 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{17} 211-212^{\circ} \mathrm{C}$); IR (Nujol) $3600,2760,2600,1627$, $1604 \mathrm{~cm}^{-1}$.
(\boldsymbol{S})-(-)- \boldsymbol{N}^{\prime}-Benzyltryptophan Methyl Ester (23). Following the reported procedure, ${ }^{17} N^{\prime}$-benzyltryptophan (22) ($54.7 \mathrm{~g}, 185 \mathrm{mmol}$) was added to methanol at $0^{\circ} \mathrm{C}$. Anhydrous HCl gas was then bubbled into the suspension for 1 h and the resulting clear mixture stirred overnight under argon. The solvent was removed, and the resulting oil dissolved in $\mathrm{MeOH}(200 \mathrm{~mL})$. Addition of $\mathrm{Et}_{2} \mathrm{O}$ caused formation of a precipitate which was filtered and dried under vacuum to yield the methyl ester hydrochloride ($46.7 \mathrm{~g}, 73 \%$) as a crystalline salt. A sample was crystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}: \mathrm{mp} 203.5-204{ }^{\circ} \mathrm{C}$ (it. ${ }^{17} \mathrm{mp} 198-198.5^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{24}+22^{\circ}(c 0.44,95 \% \mathrm{EtOH})$; UV ($95 \% \mathrm{EtOH}$) $\lambda_{\text {max }}$ (ϵ) 220 (28500), $285 \mathrm{~nm}(5540)$; ${ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.8-8.5(2$ $\mathrm{H}, \mathrm{br}), 7.6(1 \mathrm{H}, \mathrm{m}), 7.42-7.05(9 \mathrm{H}, \mathrm{m}), 5.37(2 \mathrm{H}, \mathrm{s}), 4.19(1 \mathrm{H}, \mathrm{m})$, $3.58(3 \mathrm{H}, \mathrm{s}), 3.36-3.22(2 \mathrm{H}, \mathrm{m})$; ClMS, m/e $309(\mathrm{M}-\mathrm{Cl}), 292,249$, 220, 91 (base).

To a suspension of the hydrochloride salt ($46.7 \mathrm{~g}, 135 \mathrm{mmol}$) in Et$\mathrm{OAc}(600 \mathrm{~mL})$ was added 5% aqueous $\mathrm{NaOH}(200 \mathrm{~mL})$. After 2 h of rapid stirring an insoluble precipitate was filtered off and rinsed with EtOAc (1000 mL). The organic phase was separated and the combined organic layers washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvent gave crude 23 ($38.8 \mathrm{~g}, 93 \%$) as a yellow-brown oil. An analytical sample was prepared by Kugelrohr distillation: bp $190^{\circ} \mathrm{C}$ at 0.3 mmHg ; $[\alpha]_{\mathrm{D}}^{23}+9.5^{\circ}\left(c 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ IR (neat) $3370,3330,1730,1612,1605$, $1550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$, $7.31-7.08(8 \mathrm{H}, \mathrm{m}), 6.99(1 \mathrm{H}, \mathrm{s}), 5.27(2 \mathrm{H}, \mathrm{s}), 3.87-3.81(1 \mathrm{H}, \mathrm{m})$, $3.67(3 \mathrm{H}, \mathrm{s}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=14.3,4.9 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{dd}, J=14.3$, 7.4 Hz), $1.85\left(2 \mathrm{H}, \mathrm{br}\right.$ s); EIMS, $m / e 309\left(\mathrm{M}^{+}+1\right), 308\left(\mathrm{M}^{+}\right), 292$, 249, 220, 91 (base); HRMS m / e calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ 308.1526, Found: 308.1526.
(\boldsymbol{S})-(-)- $\boldsymbol{N}, \boldsymbol{N}^{\prime}$-Dibenzyltryptophan Methyl Ester (25). A solution of methyl ester 23 ($38.8 \mathrm{~g}, 125 \mathrm{mmol}$) in benzene (500 mL) was treated with benzaldehyde ($13.9 \mathrm{~mL}, 125 \mathrm{mmol}$). After stirring the mixture for 12 h under an argon atmosphere, anhydrous $\mathrm{MgSO}_{4}(20 \mathrm{~g})$ was added, and stirring was continued for 3 h . The mixture was filtered to remove MgSO_{4}, and the solvent was evaporated in vacuo to give the crude imine $24(51 \mathrm{~g})$ as a pale yellow-brown oil: $[\alpha]_{\mathrm{D}}{ }^{23}-198^{\circ}\left(\mathrm{c} 1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR
(neat) $1730,1704,1640 \mathrm{~cm}^{-1}$; 'H NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (1 $\mathrm{H}, \mathrm{s}), 7.68-7.64(3 \mathrm{H}, \mathrm{m}), 7.42-7.10(9 \mathrm{H}, \mathrm{m}), 6.94(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $6.88(1 \mathrm{H}, \mathrm{s}), 5.18(2 \mathrm{H}, \mathrm{s}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=9.0,4.6 \mathrm{~Hz}), 3.75(3 \mathrm{H}$, s), $3.57(1 \mathrm{H}, \mathrm{dd}, J=14.3,4.6 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{dd}, J=14.3,9.6 \mathrm{~Hz})$.

A solution of crude imine $24(51.0 \mathrm{~g})$ in $\mathrm{MeOH}(500 \mathrm{~mL})$ was treated with sodium borohydride ($5 \mathrm{~g}, 132 \mathrm{mmol}$) in small portions over 10 min . The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . Removal of the solvent in vacuo gave a yellow oil which was diluted with water (350 mL) and extracted with EtOAc ($2 \times 400 \mathrm{~mL}$). The combined organic extracts were washed with water (200 mL) and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvent in vacuo followed by flash chromatography over silica gel gave, on elution with EtOAc/ hexanes ($1.5: 5$), $\mathbf{2 5}(47.4 \mathrm{~g}, 95 \%)$ as a colorless oil: $[\alpha]_{D^{24}}-4.1^{\circ}\left(c 1.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (neat) $3330,1725 \mathrm{~cm}^{-1}$; $\operatorname{UV}(95 \% \mathrm{EtOH}) \lambda_{\text {max }}$ ($\epsilon 206$ (26500), 222 (25200), $286 \mathrm{~nm}(4600)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.37-7.04(13$ $\mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{s}), 5.25(2 \mathrm{H}, \mathrm{s}), 3.83(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}), 3.66(1$ $\mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.58(3 \mathrm{H}, \mathrm{s}), 3.19(1 \mathrm{H}$, dd, $J=19.9,6.6 \mathrm{~Hz}), 3.15(1 \mathrm{H}, \mathrm{dd}, J=19.9,6.6 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 78.36 ; \mathrm{H}, 6.58 ; \mathrm{N}, 7.03$. Found: C, $77.91 ; \mathrm{H}, 6.35$; N, 6.90 .
($1 R, 3 S$)-(+)-2,9-Dibenzyl-3-(methoxycarbonyl)-1,2,3,4-tetrahydro$9 \boldsymbol{H}$-pyrido $3,4-b$) indole-1-propionic Acid (26) and ($\mathbf{1 S}, 3 \mathrm{~S}$)-(+)-2,9-Di-benzyl-3-(methoxy carbonyl) $\mathbf{1}$, 2,3,4-tetrahydro- 9 H -pyrido $[3,4-b$]indole-1-propionic Acid (26a). A solution of the dibenzyl ester 25 ($47.4 \mathrm{~g}, 119$ mmol) in 1:1 benzene/dioxane (800 mL) was treated with 2-ketoglutaric acid ($20.0 \mathrm{~g}, 137 \mathrm{mmol}$). The solution was heated at reflux for 24 h with removal of the water by the use of a Dean-Stark apparatus. Removal of solvent followed by flash chromatography over silica gel gave, on elution with EtOAc/hexanes ($1: 1$), 26/26a ($\mathbf{3 8 . 5} \mathrm{g}, 67 \%$) as a $2: 1$ mixture of diastereomers. This mixture was used directly in the next step: IR (CHCl_{3}) $3620-2200,1728,1710 \mathrm{~cm}^{-1}$.
($1 R, 3 S$)-(+)-Methyl 2,9-Dibenzyl-3-(methoxycarbonyl)-1,2,3,4-tetrahydro-9H-pyrido $3,4-6$]indole-1-propionate (27) and ($15,3 S$)-(+)-Methyl 2,9-Dibenzyl-3-(methoxy carbonyl)-1, 2,3,4-tetrahydro-9Hpyrido[$3,4-b$) indole-1-propionate (28). A solution of acids 26 ($140 \mathrm{~g}, 290$ mmol) in anhydrous MeOH (1.5 L) was treated with chlorotrimethylsilane ($170 \mathrm{~mL}, 1300 \mathrm{mmol}$). The solution was stirred at $25^{\circ} \mathrm{C}$ overnight. Removal of solvent in vacuo and purification by flash chromatography over silica gel gave, on elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 27$ and 28 (114 g. 80%) as a $2: 1$ mixture of diastereomers. The crude mixture was dissolved in boiling MeOH and cooled overnight to yield pure trans epimer 27 ($51.5 \mathrm{~g}, 36 \%$) as colorless needles: mp $144-145^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{23}$ $+13.5^{\circ}\left(\mathrm{cl} 10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 1728 \mathrm{~cm}^{-1}$; UV (hexanes) $\lambda_{\text {max }}(\epsilon)$ 212 (17600), 226 (29900), $282 \mathrm{~nm}(9800)$; ${ }^{1} \mathrm{H}$ NMR (360 MHz , $\left.\mathrm{CDCl}_{3}\right) 87.61-7.58(1 \mathrm{H}, \mathrm{m}), 7.23-7.11(9 \mathrm{H}, \mathrm{m}), 7.05-7.02(2 \mathrm{H}, \mathrm{m})$, $6.90-6.87(2 \mathrm{H}, \mathrm{m}), 5.36(1 \mathrm{H}, \mathrm{d}, J=17.3 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{d}, J=17.3$ $\mathrm{Hz}), 4.11(1 \mathrm{H}, \mathrm{dd}, J=10.5,6.0 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{d}, J=$ $13.3 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=10.5,3.1 \mathrm{~Hz}), 3.40(3 \mathrm{H}, \mathrm{s}), 3.23(1 \mathrm{H}, \mathrm{d}$, $J=13.3 \mathrm{~Hz}$), $3.15(1 \mathrm{H}, \mathrm{dd}, J=10.5,13.1 \mathrm{~Hz}), 3.10(1 \mathrm{H}, \mathrm{dd}, J=24.6$, 6.0 Hz), 2.47 ($1 \mathrm{H}, \mathrm{ddd}, J=17.2,9.5,5.8 \mathrm{~Hz}$), 2.26 ($1 \mathrm{H}, \mathrm{dt}, J=17.2$, 5.5 Hz), 1.96-1.73 ($2 \mathrm{H}, \mathrm{m}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 173.63$ (s), 173.28 (s), 138.79 (s), 137.78 (s), 137.40 (s), 135.51 (s), 129.33 (d), 128.59 (d), 127.90 (d), 127.14 (d), 126.75 (d), 126.05 (d), 121.63 (d), 119.39 (d), 118.18 (d), 109.69 (d), 107.23 (s), 55.97 (d), 53.24 (d), 52.04 (q), 51.21 (q), 46.51 (t$), 29.64$ (t), 28.11 (t), 20.26 (t); Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 74.98 ; \mathrm{H}, 6.49 ; \mathrm{N}, 5.64$. Found: C, 74.72; H, 6.66; N , 5.89 .

Chromatography of the mother liquor over silica gel, eluting with $10-30 \%$ EtOAc in hexanes allowed recovery of additional pure trans diester $27(26 \mathrm{~g})$, plus pure cis diester $28(34 \mathrm{~g})$ as colorless needles: mp $114-117^{\circ} \mathrm{C}$ (from MeOH$) ;[\alpha]_{\mathrm{D}}^{22}-14.7^{\circ}\left(c 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $1728 \mathrm{~cm}^{-1}$; UV (hexanes) $\lambda_{\text {max }}(\epsilon) 215$ (25700), 226 (33000), 283 nm (6400); ${ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.59(1 \mathrm{H}, \mathrm{m}), 7.26-7.11$ $(11 \mathrm{H}, \mathrm{m}), 6.93-6.86(2 \mathrm{H}, \mathrm{m}), 5.39(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.23(1 \mathrm{H}$, $\mathrm{d}, J=17.0 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{d}, J=13.2$ Hz), $3.69(3 \mathrm{H}, \mathrm{s}), 3.62(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 3.47(3 \mathrm{H}, \mathrm{s}), 3.41(1$ $\mathrm{H}, \mathrm{dd}, J=16.2,1.6 \mathrm{~Hz}$), $3.10(1 \mathrm{H}, \mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}$), 2.69 (1 H , ddd, $J=17.3,9.4,5.8 \mathrm{~Hz}$), $2.42(1 \mathrm{H}, \mathrm{dt}, J=17.3,5.4 \mathrm{~Hz}), 1.88-1.79$ $(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.05(\mathrm{~s}), 173.91(\mathrm{~s}), 138.66(\mathrm{~s}), 137.90$ (s), 137.37 (s), 134.56 (s), 129.11 (d), 128.59 (d), 128.18 (d), 127.11 (d), 126.90 (d), 126.03 (d), 121.58 (d), 119.20 (d), 118.30 (d), 109.64 (d), 105.53 (s), 61.15 (t), 57.80 (d), 53.65 (d), 51.85 (q), 51.22 (q), 46.46 (t), 29.61 (t), 27.23 (t), 18.01 (t). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$ C, 74.98; H, 6.49; N, 5.64. Found: C, 74.65; H, 6.69; N, 5.85.
(6 R, 10R)-(+)-Methyl 5,12-Dibenzyl-9-oxo-6,7,8,9,10,11-hexahydro6,10 -imino- 5 H -cyclooct b bindole-8-carboxylate (+)-(29). A solution of trans diester 27 ($12.7 \mathrm{~g}, 25.6 \mathrm{mmol}$) in anhydrous toluene (50 mL) was added to a stirred suspension of NaH (57% oil dispersion, $3.0 \mathrm{~g}, 70$ mmol), previously washed with hexanes ($5 \times 10 \mathrm{~mL}$), in toluene (50 mL) under argon in a Dean-Stark apparatus. The mixture was heated to
reflux, followed by dropwise addition of $\mathrm{MeOH}(0.7 \mathrm{~mL}, 17 \mathrm{mmol})$ in toluene (10 mL) over a period of 2 h , making sure the syringe needle remained below the solution surface. The solution was heated at reflux for 16 h . The mixture was cooled and quenched with glacial acetic acid $(6.5 \mathrm{~mL})$, diluted in benzene (200 mL), and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 60 \mathrm{~mL})$. The organic layer was then washed with water (100 mL) and brine (100 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvent in vacuo and purification of the residue by flash chromatography on silica gel gave, on elution with EtOAc/hexanes (1:5), (+)-29 (8.56 $\mathrm{g}, 72 \%$) as a colorless foam. An analytical sample was crystallized from EtOAc/MeOH to give (+)-29 as colorless needles: $\mathrm{mp} 148-150^{\circ} \mathrm{C}$; $[\alpha]_{D}^{23}+160^{\circ}\left(c 0.985, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 1660,1620 \mathrm{~cm}^{-1}$; UV (hexanes) $\lambda_{\max }(\epsilon) 226(28000), 258 \mathrm{~nm}(9600) ;{ }^{1} \mathrm{H}$ NMR (360 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.98(1 \mathrm{H}, \mathrm{s}), 7.57-7.54(1 \mathrm{H}, \mathrm{m}), 7.34-7.20(8 \mathrm{H}, \mathrm{m})$, $7.18-7.10(3 \mathrm{H}, \mathrm{m}), 6.90-6.86(2 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.14$ ($1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{d}, J=5.9$ $\mathrm{Hz}), 3.77(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 3.62(3 \mathrm{H}, \mathrm{s}), 3.61(1 \mathrm{H}, \mathrm{d}, J=13.5$ $\mathrm{Hz}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=16.2,5.9 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}), 2.74$ (1 H, br dd, $J=15.6,6.0 \mathrm{~Hz}$), $2.23(1 \mathrm{H}, \mathrm{dd}, J=15.6,0.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.48$ (s), 171.72 (s), 137.93 (s), 137.49 (s), 136.75 (s), 133.94 (s), 128.71 (d), 128.20 (d), 127.27 (d), 127.15 (d), 126.81 (s), 125.88 (d), 121.58 (d), 119.41 (d), 118.22 (d), 109.43 (d), 106.20 (s), 94.09 (s), 55.83 (t), 55.07 (d), 51.29 (q), 48.74 (d), 46.45 (t), 28.25 (t), 21.88 (t). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 77.56 ; \mathrm{H}, 6.07 ; \mathrm{N}, 6.03$. Found: C, 77.45; H, 5.97; N, 6.16 .
($6 \boldsymbol{R}, 10 S$)-(-)-Methyl 5,12-Dibenzyl-9-ox0-6,7,8,9,10,11-hexahydro-6,10-imino-5H-cyclooct[b indole-8-carboxylate (-)-(29). As above a solution of the cis diester (-)-28(1.98 g, 4.00 mmol) was converted into $(-)-29(1.64 \mathrm{~g}, 88 \%)$ in 4 h . Crystallization from EtOAc/MeOH gave colorless needles: $\mathrm{mp} 141-145^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-158^{\circ}\left(\mathrm{c} 0.990, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$: $\mathrm{C}, 77.56 ; \mathrm{H}, 6.07 ; \mathrm{N}, 6.03$. Found: C , $78.06 ; \mathrm{H}, 5.93 ; \mathrm{N}, 6.09$. IR and ${ }^{1} \mathrm{H}$ NMR data were identical to $(+)-29$.
${ }^{1} \mathrm{H}$ NMR Chiral Shift Study of $\boldsymbol{\beta}$-Ketoesters (+)-29 and (-)-29. A reference $360 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of (+)-29 (5 mg) in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5$ mL) was recorded: $\delta 12.66(1 \mathrm{H}, \mathrm{s}), 7.60-7.57(1 \mathrm{H}, \mathrm{m}), 7.25-6.85(11$ $\mathrm{H}, \mathrm{m}), 6.55(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 4.57(1$ $\mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{t}, J=3.5 \mathrm{~Hz})$, $3.53(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 3.20(3 \mathrm{H}, \mathrm{s})$, $3.10(2 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=15.4,5.5 \mathrm{~Hz}), 2.24(1 \mathrm{H}$, $\mathrm{d}, J=15.4 \mathrm{~Hz}$).

A spectrum of $(+)-29(2.5 \mathrm{mg})$ and $(-)-29(2.5 \mathrm{mg})$ plus the chiral solvating agent $(S)-(+)-2,2,2-$ trifluoro-1-(9-anthryl)ethanol ($8.9 \mathrm{mg}, 3$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ was recorded, which gave useful signals attributable to the separate enantiomers at 12.63 and 12.61, 3.54 and 3.53, 3.50 and 3.49 , and 3.19 and 3.18 ppm as $1: 1$ doublets. A spectrum of $(+)-29(5 \mathrm{mg})$ plus the shift reagent $\left(8.9 \mathrm{mg}, 3\right.$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ contained only one of each doublet peak at $12.63,3.53,3.49$, and 3.19 ppm. A spectrum of (-)-29 (5 mg) plus shift reagent ($8.9 \mathrm{mg}, 3$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ contained only the opposite peaks of each doublet at 12.61, 3.54, 3.50, and 3.18 ppm . Close inspection of the 12.6 ppm enolic proton signals showed no evidence for any enantiomeric impurity in either the $(+)$ - or $(-)$-compounds, leading to an estimation of $>95 \%$ ee for each compound.
($6 R, 10 R$)-(+)-5,12-Dibenzyl-9-oxo-6,7,8,9,10,11-hexahydro-6,10-im-ino- $5 H$-cyclooct b findole (30). A solution of the β-ketoester $29(20.0 \mathrm{~g}$, 43 mmol) in $\mathrm{HOAc} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}(12: 1.5: 8,250 \mathrm{~mL})$ was degassed by sonication with an ultrasonic bath under vacuum. The mixture was then heated at reflux for 3 days. The solution was cooled, diluted with EtOAc (1000 mL), and washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $150-\mathrm{mL}$ portions, until the aqueous extracts were basic to pH paper. The organic layer was washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent in vacuo gave $30(17.3 \mathrm{~g}, 99 \%)$ as a pale yellow foam. Crystallization from $\mathrm{Et}_{2} \mathrm{O}$ produced colorless needles: $\mathrm{mp} 141.5-142.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}+170^{\circ}$ (c $1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR $\left(\mathrm{CHCl}_{3}\right) 1710 \mathrm{~cm}^{-1}$; UV (hexanes) $\lambda_{\max }$ ($\left.\epsilon\right) 212$ (31000), 223 (35000), $283 \mathrm{~nm}(7900)$; ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.55(1 \mathrm{H}, \mathrm{m}), 7.36-7.10(11 \mathrm{H}, \mathrm{m}), 6.90-6.88(2 \mathrm{H}, \mathrm{m}), 5.27$ $(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.78$ $(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{d}, J=13.3 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{d}, J=13.3$ $\mathrm{Hz}), 3.30(1 \mathrm{H}, \mathrm{dd}, J=17.0,6.7 \mathrm{~Hz}), 2.74(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz})$, $2.45-2.30(2 \mathrm{H}, \mathrm{m}), 2.16-2.06(1 \mathrm{H}, \mathrm{m}), 1.81-1.75(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 209.79$ (s), 137.96 (s), 137.43 (s), 137.00 (s), 132.87 (s), 128.75 (d), 128.60 (d), 128.29 (d), 127.42 (d), 127.16 (d), 126.57 (s), 125.71 (d), 121.87 (d), 119.53 (d), 118.24 (d), 109.51 (d), 106.51 (s), 64.89 (d), 56.08 (t), 48.78 (d), 46.40 (t), 34.26 (t), 29.84 (t), 20.38 (t). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 82.73 ; \mathrm{H}, 6.45 ; \mathrm{N}, 6.89$. Found: C, 82.40; H, 6.38; N, 6.91 .
($6 R, 10 R$)-(+)-5-Benzyl-9-oxo-6,7,8,9,10,11-hexahydro-6,10-imino$\mathbf{5 H}$-cyclooct b) indole (+)-(31). A solution of $(+)-30(3.91 \mathrm{~g}, 9.6 \mathrm{mmol})$ in 88% formic acid $(40 \mathrm{~mL})$ was purged with argon for $15 \mathrm{~min}, 10 \%$ palladium on carbon (2.0 g), was added, and the mixture was stirred for

2 h at room temperature. The catalyst was filtered through Celite and rinsed with MeOH . The solvent was removed in vacuo, and the residue was diluted with EtOAc (150 mL) and washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ until basic to pH paper. The combined organic layers were washed with brine and dried (MgSO_{4}). Removal of solvent in vacuo and purification of the residue by chromatography over silica gel gave, on elution with $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{EtOAc},(+)-31(2.6 \mathrm{~g}, 85 \%)$ as a colorless foam. Crystallization from EtOAc produced colorless needles: mp $170-172^{\circ} \mathrm{C}$; $[\alpha]^{25}+104^{\circ}\left(c 1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 1710 \mathrm{~cm}^{-1}$; UV (95% $\mathrm{EtOH}) \lambda_{\max }(\epsilon) 203$ (22000), 224 (26000), $283 \mathrm{~nm}(5900) ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.48(1 \mathrm{H}, \mathrm{m}), 7.26-7.08(6 \mathrm{H}, \mathrm{m}), 6.94-6.91$ $(2 \mathrm{H}, \mathrm{m}), 5.31-5.18(2 \mathrm{H}, \mathrm{m}), 4.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.91(1 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}), 3.15(1 \mathrm{H}, \mathrm{dd}, J=16.6,6.9 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz}), 2.60$ ($1 \mathrm{H}, \mathrm{br}$), 2.41-2.25 (2 H, m), 2.16-2.02 (1 H, m), $1.87-1.81(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 210.39$ (s), 137.48 (s), 136.76 (s), 134.92 (s), 128.75 (d), 127.42 (d), 126.60 (s), 125.61 (d), 121.90 (d), 119.51 (d), 118.41 (d), 109.48 (d), 107.20 (s), 59.51 (d), 46.35 (t), 44.86 (d), 34.77 (t), $31.33(\mathrm{t}), 25.75(\mathrm{t})$; EIMS, $m / e 316\left(\mathrm{M}^{+}\right), 288,259$ (base), 225, 197, 168, 91; HRMS, m / e calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O} 316.1575$, found 316.1560 . Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 79.72 ; \mathrm{H}, 6.37, \mathrm{~N}, 8.85$. Found: C, 79.56 ; H, 6.48; N, 8.95.
($6 R, 10 R$)-(-)-Methyl 5-Benzyl-9-oxo-6,7,8,9,10,11-hexahydro-6,10-imino- $5 H$-cyclooct b jindole-8-carboxylate (-)-(32). A solution of (-)-29 $(0.52 \mathrm{~g}, 1.1 \mathrm{mmol})$ in 88% formic acid $(5 \mathrm{~mL})$ was flushed with argon and then stirred with $10 \% \mathrm{Pd} / \mathrm{C}(0.26 \mathrm{~g})$ for 1 h . The catalyst was filtered through Celite and rinsed with methanol. After evaporation in vacuo the residue was diluted with EtOAc (75 mL), washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ and brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the residue was chromatographed over silica gel, eluting with EtOAc to give (-)-32 $\left(0.295 \mathrm{~g}, 72 \%\right.$) as a colorless foam: $[\alpha]_{D}^{27}$ $-26^{\circ}\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3500-2200,1658,1618 \mathrm{~cm}^{-1}$; UV $(95 \% \mathrm{EtOH}) \lambda_{\max }(\epsilon) 202(21000), 226(26000), 254 \mathrm{~nm}(7400) ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.50(1 \mathrm{H}, \mathrm{m}), 7.26-7.07(6 \mathrm{H}, \mathrm{m})$, 6.93-6.89 ($2 \mathrm{H}, \mathrm{m}$), $5.28(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{d}, J=17.1$ $\mathrm{Hz}), 4.33(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{dd}, J=5.3,0.8 \mathrm{~Hz}), 3.60$ $(3 \mathrm{H}, \mathrm{s}), 3.15(1 \mathrm{H}, \mathrm{dd}, J=16.0,5.3 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{dd}, J=16.0,0.8$ $\mathrm{Hz}), 2.71(1 \mathrm{H}, \mathrm{dd}, J=15.8,5.5 \mathrm{~Hz}), 2.27(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 172.34$ (s), 171.66 (s), 137.48 (s), 136.55 (s), 135.50 (s), 128.73 (d), 127.30 (d), 126.87 (s), 125.81 (d), 121.69 (d), 119.47 (d), 118.19 (d), 109.45 (d), 106.71 (s), 94.22 (s), 51.33 (q), 50.07 (d), 46.42 (t), 44.86 (d), 29.23 (t), $26.40(\mathrm{t}) ;$ HRMS, m / e calcd for $\mathrm{C}_{23}{ }^{-}$ $\mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} 374.1630$, found 374.1626 .
($6 R, 10 R$)-(-)-5-Benzyl-9-oxo-6,7,8,9,10,11-hexahydro-6,10-imino$5 H$-cyclooct b bindole $(-)-(31)$. A solution of $(-)-29(184 \mathrm{mg}, 0.49$ mmol) in acetic acid $/ \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}(12: 1.5: 8,2 \mathrm{~mL})$ was degassed and then heated under reflux for 4 days. The solution was diluted with $\mathrm{EtOAc}(25 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 5$ mL). The combined aqueous solution was back extracted with EtOAc $(15 \mathrm{~mL})$. The combined organic extracts were washed with brine (5 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated in vacuo, and chromatographed over silica gel, eluting with $2 \% \mathrm{Et}_{3} \mathrm{~N}$ in EtOAc to give (-)-31 $(133 \mathrm{mg}, 86 \%)$ as a pale yellow foam: $[\alpha]_{\mathrm{D}}{ }^{28}-98^{\circ}\left(c 1.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS, m / e calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O} 316.1575$, found 316.1567 . Other spectra were identical to $(+)-31$.
($6 R, 10 R$)-(+)-5-Benzyl-9-ox0-12-(prop-2-ynyl)-6,7,8,9,10,11-hexa-hydro- 6,10 -imino- $5 H$-cyclooct b jindole (33). To a solution of keto amine $31(2.3 \mathrm{~g}, 7.3 \mathrm{mmol})$ in absolute $\mathrm{EtOH}(25 \mathrm{~mL})$ was added propargyl bromide ($80 \mathrm{wt} \%$ in toluene, $4.0 \mathrm{~mL}, 35.7 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($5.0 \mathrm{~g}, 36.2 \mathrm{mmol}$). The mixture was stirred under argon at room temperature for 12 h . The mixture was filtered through Celite and washed with EtOAc. The solvent was removed in vacuo, and the residue was purified by silica gel chromatography, eluting with $10-50 \% \mathrm{EtOAc}$ in hexanes to give $33(1.5 \mathrm{~g}, 60 \%)$ as a colorless foam: $[\alpha]_{D^{23}}+152^{\circ}(c$ $1.03, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR $\left(\mathrm{CHCl}_{3}\right) 3330,1710 \mathrm{~cm}^{-1}$; UV ($95 \% \mathrm{EtOH}$) $\lambda_{\text {max }}(\epsilon)$ 203 (20000), 224 (25000), 282 nm (5400) ; ${ }^{1} \mathrm{H}$ NMR (360 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.20-7.02(6 \mathrm{H}, \mathrm{m}), 6.87(2 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.17(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz})$, $4.20(1 \mathrm{H}, \mathrm{br}$ s), $3.84(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 3.24(2 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz})$, $3.13(1 \mathrm{H}, \mathrm{dd}, J=17.2,6.8 \mathrm{~Hz}), 2.64(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 2.33-2.27$ $(2 \mathrm{H}, \mathrm{m}), 2.11(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 2.05-1.95(1 \mathrm{H}, \mathrm{m}), 1.78-1.72(1$ $\mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 208.82$ (s), 137.39 (s), 137.09 (s), 132.07 (s), 128.79 (d), 127.49 (d), 126.38 (s), 125.72 (d), 122.02 (d), 119.60 (d), 118.24 (d), 109.50 (d), 106.22 (s), 79.33 (s), 72.93 (d), 63.82 (d), 49.58 (d), 46.51 (t), 41.20 (t), 33.90 (t), 29.45 (t), 20.03 (t); EIMS, m / e $354\left(\mathrm{M}^{+}\right), 326,297,258,206,168,91$ (base); HRMS, m / e calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} 354.1732$, found 354.1733 .
($6 R, 10 R$)-(+)-5-Benzyl-9-[(tert-butyldimethylsilyl)oxy]-12-(prop-2ynyl) $-6,7,10,11$-tetrahydro- 6,10 -imino- 5 H -cyclooct b bindole (34). A solution of ketone $33(1.54 \mathrm{~g}, 4.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $\mathrm{Et}_{3} \mathrm{~N}$ $(1.8 \mathrm{~mL}, 13.3 \mathrm{mmol})$ and stirred under argon for 15 min . tert-Butyl-
dimethylsilyl trifluoromethanesulfonate ($1.6 \mathrm{~mL}, 6.9 \mathrm{mmol}$) was then added over a $15-\mathrm{min}$ period. The mixture was stirred at room temperature for 30 min . EtOAc (50 mL) was added, and the solution was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 10 \mathrm{~mL})$ and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo. The residue was purified by silica gel chromatography using EtOAc/ hexanes (1:3) to give $34(1.66 \mathrm{~g}, 82 \%)$ as a white foam: $[\alpha]_{\mathrm{D}}{ }^{22}+66^{\circ}(c$ $1.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR $\left(\mathrm{CHCl}_{3}\right) 3310,1670,1609 \mathrm{~cm}^{-1}$; UV ($95 \% \mathrm{EtOH}$) $\lambda_{\max }(\epsilon) 202(37000), 227(41000), 283 \mathrm{~nm}(9800) ;{ }^{1} \mathrm{H}$ NMR (360 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.46(1 \mathrm{H}, \mathrm{m}), 7.22-7.02(6 \mathrm{H}, \mathrm{m}), 6.89-6.87(2$ $\mathrm{H}, \mathrm{m}), 5.27(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 4.55(1$ $\mathrm{H}, \mathrm{dd}, J=5.5,1.9 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{d}, J=$ $5.7 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=16.1,2.5 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}, J=16.1,2.5$ $\mathrm{Hz}), 2.97(1 \mathrm{H}, \mathrm{dd}, J=16.1,5.7 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}), 2.67$ ($1 \mathrm{H}, \mathrm{brdd}, J=16.4,4.7 \mathrm{~Hz}$), $2.14(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 1.90(1 \mathrm{H}, \mathrm{dd}$, $J=16.4,5.5 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.09(3 \mathrm{H}, \mathrm{s}), 0.00(3 \mathrm{H}, \mathrm{s}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 150.20$ (s), 137.67 (s), 136.82 (s), 134.06 (s), 128.65 (d), 127.26 (d), 127.21 (s), 125.88 (d), 121.26 (d), 119.15 (d), 118.16 (d), 109.37 (d), 106.18 (s), 97.81 (d), 79.97 (s), 72.49 (d), 55.43 (d), 48.92 (d), 46.48 (t), 41.30 (t), 29.28 (t), 25.65 (q), 21.28 (t), 17.95 (s$),-4.36$ (q), -4.58 (q); EIMS, m/e 468 (M+ ${ }^{+}$, 429, 377, 297, 257, 209, 152 (base); HRMS, m / e calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{OSi} 468.2597$, found 468.2604 .
(6 R,10R)-(+)-Methyl 5-Benzyl-9-[(tert-butyldimethylsilyl)oxy]-6,7,10,11-tetrahydro-6,10-imino-5H-cyclooct $[b$ indole-12-but-2-ynoate (35). A solution of silyl enol ether $34(7.0 \mathrm{~g}, 15 \mathrm{mmol}$) in dry THF (75 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ under argon, and a solution of $n-\mathrm{BuLi}(30.3$ mmol) in hexanes (13.0 mL) was slowly added over a $30-\mathrm{min}$ period. After 15 min at $-78^{\circ} \mathrm{C}$, methyl chloroformate ($5.8 \mathrm{~mL}, 75.1 \mathrm{mmol}$) was added, and the solution was slowly warmed to $-30^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and warmed to room temperature. The mixture was diluted with EtOAc (500 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50$ mL) and brine, and dried (MgSO_{4}). Removal of the solvent in vacuo and chromatography over silica gel, eluting with $10-30 \% \mathrm{EtOAc}$ in hexanes, gave $35(6.0 \mathrm{~g}, 76 \%)$ as a colorless foam: $[\alpha]_{\mathrm{D}}{ }^{21}+66^{\circ}\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 2220,1711,1672,1608 \mathrm{~cm}^{-1} ; \mathrm{UV}(95 \% \mathrm{EtOH}) \lambda_{\max }(\epsilon) 202$ (35000), 227 (36000), 283 nm (7700); ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.46(1 \mathrm{H}, \mathrm{m}), 7.26-7.03(6 \mathrm{H}, \mathrm{m}), 6.85(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz})$, $5.27(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{dd}$, $J=5.5,1.8 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}), 3.63(3 \mathrm{H}, \mathrm{s}), 3.54(1 \mathrm{H}$, $\mathrm{d}, J=5.6 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz})$, $2.95(1 \mathrm{H}, \mathrm{dd}, J=16.1,5.6 \mathrm{~Hz}), 2.82(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}), 2.65(1$ $\mathrm{H}, \mathrm{br} \mathrm{dd}, J=16.3,5.3 \mathrm{~Hz}), 1.90(1 \mathrm{H}, \mathrm{dd}, J=16.3,5.5 \mathrm{~Hz}), 0.89(9$ $\mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s}), 0.00(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.59(\mathrm{~s})$, 150.00 (s), 137.56 (s), 136.88 (s), 133.57 (s), 128.69 (d), 127.27 (d), 127.05 (s), 125.81 (d), 121.41 (d), 119.20 (d), 118.15 (d), 109.37 (d), 106.06 (s), 97.75 (d), 84.48 (s), 76.12 (s), 55.66 (d), 52.48 (q), 49.20 (d), 46.46 (t), 41.41 (t), 29.35 (t), 25.62 (q), 21.06 (t), 17.93 (s), -4.38 (q), -4.45 (q); EIMS, $m / e 526$ (\mathbf{M}^{+}), 468, 429, 316, 259, 152 (base), 91 ; HRMS, m / e calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si} 526.2652$, found 526.2652 .
($6 R, 10 R$)-(+)-Methyl 5-Benzyl-9-oxy-6,7,10,11-tetrahydro-6,10-im-ino-5H-cyclooct $[b$ indole-12-but-2-ynoate (36). A solution of silyl enol ether $35(1.4 \mathrm{~g}, 2.7 \mathrm{mmol})$ in dry THF (30 mL) was treated with lithium tetrafluoroborate (1.0 M in $\mathrm{CH}_{3} \mathrm{CN}, 2.7 \mathrm{mmol}$). The mixture was heated at reflux for 3 days. After cooling, the mixture was diluted with EtOAc (400 mL), washed with saturated aqueous NaHCO_{3} and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent in vacuo gave $36(1.0 \mathrm{~g}, 91 \%)$ as a colorless foam: $[\alpha]_{D}{ }^{26}+160^{\circ}\left(c 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2220,1710$, $1607,1262 \mathrm{~cm}^{-1}$; UV (p-dioxane) $\lambda_{\max }(\epsilon) 231$ (29000), 283 nm (9300); ${ }^{\prime} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.29-7.13$ (6 $\mathrm{H}, \mathrm{m}), 6.95-6.92(2 \mathrm{H}, \mathrm{m}), 5.38(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{d}$, $J=17.1 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.12(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 3.74(3 \mathrm{H}$, s), $3.47(2 \mathrm{H}, \mathrm{s}), 3.22(1 \mathrm{H}, \mathrm{dd}, J=17.3,6.9 \mathrm{~Hz}), 2.77(1 \mathrm{H}, \mathrm{d}, J=17.3$ $\mathrm{Hz}), 2.46-2.38(2 \mathrm{H}, \mathrm{m}), 2.16-2.08(1 \mathrm{H}, \mathrm{m}), 1.87-1.81(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 208.25(\mathrm{~s}), 153.36(\mathrm{~s}), 137.28$ (s), 137.16 (s), 131.63 (s), 128.79 (d), 127.49 (d), 126.24 (s), 125.64 (d), 122.15 (d), 119.66 (d), 118.27 (d), 109.47 (d), 106.17 (s), 83.56 (s), 76.32 (s), 64.06 (d), 52.56 (q), 49.89 (d), 46.49 (t), 41.03 (t), 33.73 (t), 29.47 (t), 19.98 (t); EIMS, $m / e 412\left(\mathrm{M}^{+}\right), 355$ (base), $316,259,168,91$; HRMS, m / e calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} 412.1787$, found 412.1787
(Z)-(2S,6R,12bR)-(+)-Methyl

12-Benzyl-13-oxo$1,2,3,4,5,6,7,12,12 b-o c t a h y d r o-2,6$-methanoindolo $[2,3-a$ aquinolizine-3ethylidenoate (37) and (E)-(2S,6R,12bR)-(+)-Methyl 12-Benzyl-13-oxo-1,2,3,4,5,6,7,12,12b-octahydro-2,6-methanoindolo (2,3-a]quinolizine-3-ethylidenoate (38). A solution of ketone $36(1.00 \mathrm{~g}, 2.43 \mathrm{mmol})$, pyrrolidine ($40.1 \mathrm{~mL}, 0.46 \mathrm{mmol}$), and trifluoroacetic acid ($38 \mathrm{~mL}, 0.46$ $\mathrm{mmol})$ in benzene $(20 \mathrm{~mL})$ was heated at reflux for 19 h . The solution was cooled, diluted with EtOAc (100 mL), and washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 20 \mathrm{~mL})$ and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo. The residue was chromatographed over silica gel, eluting with $20-70 \% \mathrm{EtOAc}$ in hexanes
o yield $Z-(+)-37(140 \mathrm{mg}, 14 \%)$ and $E-(+)-38(708 \mathrm{mg}, 71 \%)$.
$(\boldsymbol{Z})-(+)-37$: An analytical sample was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH} ; \mathrm{mp} 236-238^{\circ} \mathrm{C}$ (dec); $[\alpha]_{\mathrm{D}}{ }^{25}+250^{\circ}$ (c $1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR $\left(\mathrm{CHCl}_{3}\right) 1712,1650,1618 \mathrm{~cm}^{-1}$; UV (p-dioxane) $\lambda_{\text {max }}(\epsilon) 231$ (37000), $283 \mathrm{~nm}(10000)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.52(1 \mathrm{H}, \mathrm{m})$, $7.28-7.09(6 \mathrm{H}, \mathrm{m}), 7.01-6.98(2 \mathrm{H}, \mathrm{m}), 5.80(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}), 5.22$ $(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{dd}, J=$ 19.9. 2.2 Hz), $4.26(1 \mathrm{H}, \mathrm{dd}, J=9.4,2.7 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=19.9$ $2.6 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=$ $15.7,1.0 \mathrm{~Hz}), 3.09(1 \mathrm{H}, \mathrm{dd}, J=15.7,6.4 \mathrm{~Hz}), 3.06-3.05(1 \mathrm{H}, \mathrm{m}), 2.24$ $(1 \mathrm{H}, \mathrm{ddd}, J=13.2,9.4,2.0 \mathrm{~Hz}), 1.97(1 \mathrm{H}, \mathrm{dt}, J=13.2,3.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 215.54$ (s), 166.09 (s), 157.78 (s), 137.40 (s), 137.20 (s), 137.03 (s), 128.89 (d), 127.62 (d), 126.58 (s), 126.14 (d), 122.02 (d), 119.62 (d), 118.65 (d), 115.84 (d), 109.35 (d), 104.96 (s), 64.55 (d), 55.91 (t), 52.00 (d), 51.33 (q), 48.79 (d), 46.72 (t), 36.45 (t), 22.50 (t); EIMS, $m / e 412\left(\mathrm{M}^{+}\right), 384$ (base), 353, 325, 293, 259, 233, 168, 125, 91 ; HRMS, m / e calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} 412.1787$, found 412.1786 .
(E)-(+)-38: $[\alpha]_{D}^{25}+140^{\circ}\left(c 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 1723, 1660, $1615 \mathrm{~cm}^{-1}$; UV (p-dioxane) $\lambda_{\max }(\epsilon) 230(33000), 283 \mathrm{~nm}(11000) ;{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(1 \mathrm{H}, \mathrm{d}, 7.4 \mathrm{~Hz}), 7.29-7.09(6 \mathrm{H}, \mathrm{m})$, $6.98(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{s}), 5.24(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.17$ $(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 4.65-4.64(1 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{dd}, J=9.4,2.3$ $\mathrm{Hz}), 3.90(2 \mathrm{H}, \mathrm{s}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.55(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 3.37(1 \mathrm{H}$, $\mathrm{d}, J=15.7 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{dd}, J=15.7,6.4 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{ddd}, J=$ $13.1,9.4,1.0 \mathrm{~Hz}), 1.99(1 \mathrm{H}, \mathrm{dt}, J=13.1,3.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 214.78$ (s), 165.43 (s), 154.85 (s), 137.39 (s), 137.21 (s), 136.86 (s), 128.90 (d), 127.63 (d), 126.59 (s), 126.04 (d), 122.06 (d), 119.62 (d), 118.68 (d), 116.01 (d), 109.36 (d), 105.12 (s), 64.43 (d), 55.90 (t), 51.36 (q), 49.26 (d), 46.68 (t), 45.83 (d), 35.46 (t), 22.46 (t); EIMS, $m / e ~ 412$ (\mathbf{M}^{+}), 384 (base), 293, 259, 168, 125, 91 ; HRMS, m / e calcd for $\mathrm{C}_{26^{-}}$ $\mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} 412.1787$, found 412.1787

Lombardo Reagent. Following the reported procedure ${ }^{35} \mathrm{CH}_{2} \mathrm{Br}_{2}$ (2.0 $\mathrm{mL}, 28 \mathrm{mmol}$) was added to Zn dust ($5.75 \mathrm{~g}, 87.9 \mathrm{mmol}$) in dry THF $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ with efficient overhead stirring. After $10 \mathrm{~min}, \mathrm{TiCl}_{4}$ $(2.3 \mathrm{~mL}, 21 \mathrm{mmol})$ was added dropwise over 20 min . The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ over 2.5 h and then stored in a refrigerator $\left(5^{\circ} \mathrm{C}\right)$ until needed.
(E)-(2S, $6 R, 12 \mathrm{~b}$ R)-(+)-Methyl 12-Benzyl-13-methylene-1,2,3,4,5,6,7,12,12b-octahydro-2,6-methanoindolo 2,3 -a]quinolizine-3ethylidenoate (39) and (E)-($2 S, 6 R, 7 \mathrm{aS}, 12 \mathrm{a} R, 12 \mathrm{~b} R$)-(+)-Methyl 12-Benzyl-7a,12a-methano-13-methylene-1,2,3,4,5,6,7,7a,12,12a,12b-deca-hydro-2,6-methanoindolo[2,3-a]quinolizine-3-ethylidenoate (40). A solution of ketone $38(256 \mathrm{mg}, 0.62 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with approximately 5 g of Lombardo's reagent. After stirring for 2 h at room temperature the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and filtered through Celite. The layers were separated, and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed in vacuo. The residue was purified by chromatography over silica gel eluting with $20-50 \%$ EtOAc in hexanes to give the cyclopropane $40(35.5 \mathrm{mg}, 21 \%)$ and the desired olefin $39(62.6 \mathrm{mg}$, 24%) as colorless foams.

Olefin (39): $\mathrm{mp} 175^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}^{24}}+54^{\circ}\left(c 1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR $\left(\mathrm{CHCl}_{3}\right) 1709,1660 \mathrm{~cm}^{-1}$; UV (p-dioxane) $\lambda_{\text {max }}(\epsilon) 235(35000), 284$ nm (10000); ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.53(1 \mathrm{H}, \mathrm{m})$, 7.26-7.19 (4 H, m), 7.15-7.09 (2 H, m), 7.00-6.98 ($2 \mathrm{H}, \mathrm{m}$), 5.70 (1 $\mathrm{H}, \mathrm{s}), 5.25(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.03(1$ $\mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{Hhz}), 4.57(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz})$, $4.13(1 \mathrm{H}, \mathrm{dd}, J=9.2,2.3 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{brd}, J=3.5 \mathrm{~Hz}), 3.75(2$ $\mathrm{H}, \mathrm{s}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.25(1 \mathrm{H}, \mathrm{dd}, J=15.5,5.7 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{d}, J$ $=15.5 \mathrm{~Hz}), 1.98(1 \mathrm{H}, \mathrm{dd}, J=12.4,9.7 \mathrm{~Hz}), 1.74(1 \mathrm{H}, \mathrm{dt}, J=12.4$, $3.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.02(\mathrm{~s}), 162.75(\mathrm{~s}), 150.25(\mathrm{~s}), 138.39$ (s), 137.38 (s), 137.09 (s), 128.70 (d), 127.35 (d), 127.18 (s), 125.96 (d), 121.32 (d), 119.18 (d), 118.21 (d), 111.18 (d), 109.29 (d), 108.11 (t), 104.28 (s$), 56.45$ (q), 50.91 (d), 50.91 (t), 48.85 (d), 46.56 (t), 37.24 (d), 34.73 (t), 26.40 (t); EIMS, $m / e 410\left(\mathrm{M}^{+}\right), 319,259,149,91$ (base); HRMS, m / e calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} 410.1994$, found 410.1993 . Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 80.00 ; \mathrm{H}, 6.38 ; \mathrm{N}, 6.82$. Found: C, 79.51; H, 6.40; N, 6.86

Cyclopropane (40): IR $\left(\mathrm{CHCl}_{3}\right) 1710,1650,1610,900 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.24(5 \mathrm{H}, \mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{ddd}, J=$ $7.3,1.3,0.5 \mathrm{~Hz}), 7.01(1 \mathrm{H}$, ddd, $J=7.8,7.5,1.3 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{td}$, $J=7.4,1.0 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{dd}, J=7.8,0.3 \mathrm{~Hz}), 5.61(1 \mathrm{H}, \mathrm{dd}, J=$ $2.0,1.5 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 4.45$ $(1 \mathrm{H}, \mathrm{t}, J=3.0 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{d}, J=15.0$ $\mathrm{Hz}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{dd}, J=18.3,1.9 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{dd}, J$ $=18.4,2.0 \mathrm{~Hz}), 3.29(1 \mathrm{H}$, br d, $J=6.9 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{dd}, J=10.0$, $4.3 \mathrm{~Hz}), 2.55(1 \mathrm{H}, \mathrm{dd}, J=13.7,0.7 \mathrm{~Hz}), 2.24(1 \mathrm{H}, \mathrm{dt}, J=13.2,4.0$ $\mathrm{Hz}), 1.37(1 \mathrm{H}, \mathrm{ddd}, J=13.0,10.2,2.6 \mathrm{~Hz}), 1.17(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz})$, $0.13\left(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}\right.$); EIMS, $m / e 424\left(\mathrm{M}^{+}\right), 333,234,91$ (base);

HRMS, m / e calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} 424.2152$, found 424.2156

Cyclopropanol 41. According to the reported procedure, ${ }^{36}$ a suspension of Zn dust ($235 \mathrm{mg}, 3.6 \mathrm{mmol}$) in glacial acetic acid (2.0 mL) was treated with $\mathrm{Cu}(\mathrm{OAc})_{2}(20 \mathrm{mg}, 0.1 \mathrm{mmol}$). The desired $\mathrm{Zn}-\mathrm{Cu}$ couple formed instantly and was washed thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Zn}-\mathrm{Cu}$ couple was then suspended in dry THF (2.0 mL). The suspension was treated with $\mathrm{CH}_{2} \mathrm{I}_{2}$ and stirred at $50^{\circ} \mathrm{C}$ for 2 h . $\mathrm{TiCl}_{4}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 1.0 mmol) was added, and the mixture was stirred at room temperature for 30 min . A solution of $38(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added, and the mixture was stirred at room temperature for 16 h . The reaction was quenched by addition of saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.5 mL), which caused vigorous evolution of gas. The resulting light blue slurry was filtered through Celite and washed with EtOAc. Removal of solvent and purification of the residue by preparatory TLC gave, on elution with $\mathrm{MeOH} / \mathrm{EtOAc}$ (1:9), the cyclopropanol 41 ($74 \mathrm{mg}, 74 \%$) as a colorless foam: IR $\left(\mathrm{CHCl}_{3}\right) 3600-3110,1730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (360 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.51(1 \mathrm{H}, \mathrm{m}), 7.32-7.05(6 \mathrm{H}, \mathrm{m}), 7.00-6.96$ (2 $\mathrm{H}, \mathrm{m}), 5.19(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 5.11(1 \mathrm{H}, \mathrm{d}, J=16.7 \mathrm{~Hz}), 3.94(1$ $\mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 3.24-3.20$ $(1 \mathrm{H}, \mathrm{m}), 3.04(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 2.74$ $(1 \mathrm{H}, \mathrm{d}, J=16.7 \mathrm{~Hz}), 2.39(1 \mathrm{H}, \mathrm{d}, J=16.7 \mathrm{~Hz}), 2.03(1 \mathrm{H}, \mathrm{ddd}, J$ $=13.7,9.4,0.8 \mathrm{~Hz}), 1.49(1 \mathrm{H}$, ddd, $J=13.8,4.2,1.0 \mathrm{~Hz}), 1.28-1.23$ $(1 \mathrm{H}, \mathrm{m}), 1.01(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}) ; \mathrm{CIMS}, m / e 414\left(\mathrm{M}^{+}\right), 397,387$, 341 (base), 259, 168, 91; HRMS, m / e calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ 414.1945, found 414.1946.

Preparation of Tebbe's Reagent. According to the reported procedure, ${ }^{38}$ commercially available titanocene dichloride was purified by Soxhlet extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A three-necked flask was charged with purified titanocene dichloride ($1.6 \mathrm{~g}, 6.4 \mathrm{mmol}$), and a commercially available solution of trimethylaluminum (2.0 M in toluene, $6.4 \mathrm{~mL}, 12.8$ mmol) was added. The mixture was ştirred for 3 days at room temperature to give a solution of Tebbe's reagent in toluene.
(E)-(2S,6R,12bR)-(+)-Methyl 12-Benzyl-13-methylene-1,2,3,4,5,6,7,12,12b-octahydro-2,6-methanoindolo [2,3-a]quinolizine-3ethylidenoate (39) and (E)-(2S,6R,12bR)-(+)-Methyl 12-Benzyl-13-methylene-18-oxo-18-methoxy-1,2,3,4,5,6,7,12,12b-octahydro-2,6methanoindolo 2,3 -a quinolizine-3-ethylidenoate (42). A solution of ketone 38 ($203 \mathrm{mg}, 0.49 \mathrm{mmol}$) in dry THF (3.0 mL) was treated with a solution of Tebbe's reagent in toluene $(800 \mu \mathrm{~L})$. The mixture was stirred at room temperature for 40 min . After this time the mixture was quenched with 2 M aqueous $\mathrm{NaOH}(0.5 \mathrm{~mL})$ and stirred at room temperature overnight to allow for complete decomposition of the aluminum and titanium salts. The resulting bright yellow suspension was filtered through Celite, washed with EtOAc, and the solvent was removed in vacuo. Purification of the residue by preparatory TLC gave, on elution with EtOAc-hexanes ($1: 1$), the previously reported exo-methylene compound 39 ($128 \mathrm{mg}, 63 \%$) and the α, β-unsaturated ketone 42 (30 mg , 15\%): IR $\left(\mathrm{CHCl}_{3}\right) 1695,1630 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.55-7.22 ($1 \mathrm{H}, \mathrm{m}$), 7.29-7.08 ($6 \mathrm{H}, \mathrm{m}$), 7.00-6.98 ($2 \mathrm{H}, \mathrm{m}$), 6.08 (1 $\mathrm{H}, \mathrm{s}), 5.26(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.02(1$ $\mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 4.57(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=2.4$ $\mathrm{Hz}), 4.09(1 \mathrm{H}, \mathrm{dd}, J=9.8,2.8 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{brd}, J=3.7 \mathrm{~Hz})$, $3.70-3.66(2 \mathrm{H}, \mathrm{m}), 3.22(1 \mathrm{H}, \mathrm{dd}, J=15.5,5.6 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{dd}, J$ $=15.5,1.1 \mathrm{~Hz}), 2.18(3 \mathrm{H}, \mathrm{s}), 1.95(1 \mathrm{H}, \mathrm{td}, J=10.0,1.6 \mathrm{~Hz}), 1.71(1$ $\mathrm{H}, \mathrm{dt}, J=12.3,3.6 \mathrm{~Hz}$); EIMS, $m / e 394\left(\mathrm{M}^{+}\right), 351,303,259,168,131$, 91; HRMS, m / e calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{20}$ 394.2047, found 394.2042.
(E)-(+)-(16S)-12-Benzyl-10-desoxy-18-oxo-18-methoxysarpagine (43). A solution of commercially available $\mathrm{BH}_{3}-\mathrm{THF}$ (1.0 M in THF, 5.0 mL) was treated with 2-methyl-2-butene (2.0 M in THF, 5 mL) at $-5^{\circ} \mathrm{C}$ to give a 0.5 M solution of diisoamylborane in THF .

A solution of olefin 39 ($370 \mathrm{mg}, 0.90 \mathrm{mmol}$) in DMF (5 mL) was added to the diisoamylborane at $0^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for 4 h . Ten percent aqueous NaOH was then added (3 mL) followed by $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(4 \mathrm{~mL})$. The mixture was stirred for 1 h at room temperature. The mixture was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\times 15 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Purification of the residue by silica gel chromatography gave, on elution with $10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$, the alcohol $43(225 \mathrm{mg}, 58 \%)$ as a colorless foam: $\mathrm{mp} 125^{\circ} \mathrm{C}\left(\mathrm{THF}, \mathrm{Et}_{2} \mathrm{O} 1: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+61.4^{\circ}\left(c 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3700-3300,1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.52-7.47 (1 H, m), 7.24-7.07 (6 H, m), 6.97-6.95 (2 H, m), 5.67 (1 $\mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{d}, J=17.0$ $\mathrm{Hz}), 4.00-3.96(2 \mathrm{H}, \mathrm{m}), 3.64(3 \mathrm{H}, \mathrm{s}), 3.61-3.55(2 \mathrm{H}, \mathrm{m}), 3.49(1 \mathrm{H}$, $\mathrm{dd}, J=10.7,6.9 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{dd}, J=10.7,4.9 \mathrm{~Hz}), 3.22(1 \mathrm{H}$, dd, $J=10.7,8.0 \mathrm{~Hz}), 2.99-2.90(2 \mathrm{H}, \mathrm{m}), 2.15-2.10(1 \mathrm{H}, \mathrm{m}), 1.61-1.51$ (1 H, m); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 167.6$ (s), 166.3 (s), 138.7 (s), 138.2 (s), 137.6 (s), 129.0 (2C, d), 127.5 (d), 127.0 (s), 126.2 (2C, d), 121.8 (d), 119.8 (d), 118.9 (d), 110.5 (d), 109.9 (d), 106.5 (s), 60.9 (t), 56.9 (t), 52.2 (d), 50.7 (q), 48.3 (d), 46.4 (t), 42.1 (d), 28.2 (d), 25.7 (t), 22.7 (t); EIMS, $m / e 428\left(\mathrm{M}^{+}\right), 411$ (base), 397, 357, 321, 258, 91; HRMS, m / e
calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} 428.2101$, found 428.2102. Seventy percent yield can be obtained on a small scale.
(Z)-(+)-(16S)-12-Benzyl-10-desoxy-18-oxo-18-methoxysarpagine (44). The above procedure was performed on the Z olefinic isomer 37 ($370 \mathrm{mg}, 0.90 \mathrm{mmol}$) to give, after chromatography on flash silica gel (EtOAc eluant), 225 mg (58% yield) of 44 as a white foam. Additionally 25.7 mg (7%) of the starting exo-methylene compound was recovered: $[\alpha]_{D}+31.3^{\circ}\left(c 0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3700-3300,1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.51(1 \mathrm{H}, \mathrm{m}), 7.29-7.09(6 \mathrm{H}, \mathrm{m})$, $7.03-6.99(2 \mathrm{H}, \mathrm{m}), 5.77(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{d}, J=17.3$ $\mathrm{Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=17.3 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{dd}, J=20.0,2.3 \mathrm{~Hz})$, 4.09-3.97($2 \mathrm{H}, \mathrm{m}$), $3.72(3 \mathrm{H}, \mathrm{s}), 3.67(1 \mathrm{H}, \mathrm{dd}, J=10.5,6.8 \mathrm{~Hz}), 3.58$ ($1 \mathrm{H}, \mathrm{dd}, J=10.8,5.3 \mathrm{~Hz}$), $3.34(1 \mathrm{H}, \mathrm{dd}, J=10.6,8.9 \mathrm{~Hz}$), 3.05 (1 $\mathrm{H}, \mathrm{dd}, J=15.7,5.4 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{dd}, J=16.6,1.7 \mathrm{~Hz}), 2.57(1 \mathrm{H}$, dd, $J=5.6,3.4 \mathrm{~Hz}), 2.32-2.26(1 \mathrm{H}, \mathrm{m}), 1.76-1.58(2 \mathrm{H}, \mathrm{m})$; EIMS (m / e) $428\left(\mathrm{M}^{+}\right), 427,397,258,168,91$ (base); HRMS, m / e calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} 428.2101$, found 428.2092 .
(E)-(+)-(16S)-12-Benzyl-10-desoxy-18-hydroxysarpagine (45). A solution of ester $43(542 \mathrm{mg}, 1.3 \mathrm{mmol})$ in dry benzene (5 mL) was treated with diisobutylaluminum hydride (1.0 M in toluene, 5.0 mmol). The mixture was stirred at room temperature for 1 h . The reaction was quenched by the addition of $\mathrm{MeOH}(520 \mu \mathrm{~L})$. The resulting mixture was stirred at room temperature overnight. The resulting suspension was filtered through Celite and washed with MeOH . The solvent was removed in vacuo, and the residue was purified by chromatography on silica gel to give, after elution with $10 \% \mathrm{MeOH} / \mathrm{EtOAc}, 45(430 \mathrm{mg}, 85 \%)$ as a colorless foam: $[\alpha]_{D}^{22}+38.8^{\circ}\left(c \quad 0.74, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ $3700-3300,1450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.50(1 \mathrm{H}$, m), 7.29-7.08 ($6 \mathrm{H}, \mathrm{m}$), 7.01-6.98 ($2 \mathrm{H}, \mathrm{m}$), $5.45(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$), $5.28(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 4.12(2 \mathrm{H}, \mathrm{t}$, $J=6.6 \mathrm{~Hz}), 4.05(1 \mathrm{H}, \mathrm{dd}, J=9.1,4.0 \mathrm{~Hz}), 3.72-3.54(4 \mathrm{H}, \mathrm{m}), 3.27$ (1 H, dd, $J=10.6,9.5 \mathrm{~Hz}$), 2.98-2.86 (3 H, m), 2.20-2.16 (1 H, m), $1.77-1.60(1 \mathrm{H}, \mathrm{m})$; EIMS, $m / e 400\left(\mathrm{M}^{+}\right), 399,382,258,167,90$ (base); HRMS, m / e calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}, 400.2152$, found 400.2151 .
(Z)-(+)-(16S)-12-Benzyl-10-desoxy-18-hydroxysarpagine (46). The above reduction was performed on the corresponding Z olefinic isomer $44(205 \mathrm{mg}, 0.48 \mathrm{mmol})$ with diisobutylaluminum hydride (1 M in toluene, $1.44 \mathrm{~mL}, 1.44 \mathrm{mmol}$). The compound 46 ($176 \mathrm{mg}, 91.9 \%$ yield) was isolated after preparative thin-layer chromatography (2.0 mm , silica gel plate) eluting with $20 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} ;[\alpha]_{\mathrm{D}}+19.4^{\circ}\left(c 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 3700-3300 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.52$ ($1 \mathrm{H}, \mathrm{m}$), 7.36-7.12 ($6 \mathrm{H}, \mathrm{m}$), 7.04-7.02 ($2 \mathrm{H}, \mathrm{m}$), 5.43 ($1 \mathrm{H}, \mathrm{dd}, J=$ $8.1,4.2 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{d}, J=16.7 \mathrm{~Hz})$, $4.17-4.00(3 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{d}, J=18.1 \mathrm{~Hz}), 3.63-3.52(3 \mathrm{H}, \mathrm{m}), 3.25$ ($1 \mathrm{H}, \mathrm{dd}, J=10.9,8.5 \mathrm{~Hz}$), $2.99(2 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}), 2.44-2.20(3 \mathrm{H}$, m), 1.73 ($1 \mathrm{H}, \mathrm{t}, J=11.6 \mathrm{~Hz}$), 1.61 (1 H , ddd, $J=3.6,3.6,12.9 \mathrm{~Hz}$); EIMS (m / e) $400\left(\mathrm{M}^{+}\right), 399,382,369,259,168,91$ (base); HRMS, m / e calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} 400.2152$, found 400.2154
(E)-(+)-(16S)-10-desoxy-18-hydroxysarpagine (47). A solution of diol 45 ($160 \mathrm{mg}, 0.40 \mathrm{mmol}$) in THF (8 mL) was cooled to $-78^{\circ} \mathrm{C}$. NH_{3} (20 mL) was then condensed into the flask small pieces of Na metal (37 $\mathrm{mg}, 1.6 \mathrm{mmol}$) were added, and the solution was stirred for 1.5 h at -78 ${ }^{\circ} \mathrm{C}$. While still at $-78^{\circ} \mathrm{C}$ the solution was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The ammonia was allowed to evaporate overnight. The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$ and then extracted with $n-\mathrm{BuOH}(2 \times 20 \mathrm{~mL})$. The solvent was removed in vacuo, and the residue was purified by preparatory TLC to give, on elution with 30% EtOAc/hexanes, the deprotected compound 47 (113 $\mathrm{mg}, 91 \%$) as a colorless foam: $[\alpha]_{\mathrm{D}}{ }^{24}-2.7^{\circ}(c 0.55, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(360 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.34(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 5.27(1$ $\mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{t}, J=4.3 \mathrm{~Hz})$, $4.02(1 \mathrm{H}, \mathrm{dd}, J=9.8,2.8 \mathrm{~Hz}), 3.95(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.0 \mathrm{~Hz}), 3.59(1$ $\mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.51-3.24(3 \mathrm{H}, \mathrm{m}), 2.92-2.80(3$ $\mathrm{H}, \mathrm{m}), 2.67(1 \mathrm{H}, \mathrm{dd}, J=15.9,5.8 \mathrm{~Hz}), 2.00-1.65(4 \mathrm{H}, \mathrm{m})$; EIMS, m / e $310(\mathrm{M}-2), 309,293,279,169$; HRMS, m / e calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ 312.1839, found ($\mathrm{M}^{+}-2$) 310.1675 .
(+)-18-Hydroxykoumidine (48). The (Z)-diol 46 ($160 \mathrm{mg}, 0.40$ mmol) was treated with sodium metal ($37 \mathrm{mg}, 1.60 \mathrm{mmol}$) by using the procedure described above. Chromatography on a $2.0-\mathrm{mm}$ silica gel plate ($30 \% \mathrm{MeOH} / E t O A c$ eluant) gave 48 ($113 \mathrm{mg}, 91 \%$ yield): $[\alpha]_{\mathrm{D}}{ }^{24}-2.7^{\circ}$ (c $0.55, \mathrm{MeOH}) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3600-3066,2920,1680,1625,1615 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.36(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.27(1$ $\mathrm{H}, \mathrm{d}, J=7.28 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{td}, J=7.05,1.5 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{td}, J$ $=8.1,1.2 \mathrm{~Hz}), 5.30-5.34(1 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{brd}, J=6.6 \mathrm{~Hz}), 3.94$ $(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{d}, J=18.0$ $\mathrm{Hz}), 3.47-3.26(5 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{d}, J=$ $15.6 \mathrm{~Hz}), 2.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.10-2.06(1 \mathrm{H}, \mathrm{m}), 1.76(1 \mathrm{H}, \mathrm{td}, J=12.3$, $1.5 \mathrm{~Hz}), 1.67(1 \mathrm{H}, \mathrm{dt}, J=12.9,3.6 \mathrm{~Hz})$; EIMS $(m / e) 310\left(\mathrm{M}^{+}-2 \mathrm{H}\right)$, 309, 293, 279, 169 (base).
$(E)-(+)-(16 S)$-10-desoxysarpagine (49). Anhydrous ammonia was condensed into a round-bottomed flask which had been cooled to $-30^{\circ} \mathrm{C}$ and fitted with a dry-ice condenser. The (E)-diol 45 ($108 \mathrm{mg}, 0.27$ mmol) was added and treated with sodium metal ($35 \mathrm{mg}, 1.52 \mathrm{mmol}$) for 2 h at $-30^{\circ} \mathrm{C}$. The intensely blue solution was quenched by addition of anhydrous $\mathrm{NH}_{4} \mathrm{Cl}(500 \mathrm{mg})$. The condenser was removed, and the flask was warmed to room temperature allowing most of the ammonia to evaporate. Water (50 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ were added, and the organic layer was separated, washed with brine (50 mL), and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Purification was effected by using preparative thin-layer chromatography ($2.0-\mathrm{mm}$, silica gel plate eluted twice with 25% $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) to give 49 ($50 \mathrm{mg}, 63 \%$ yield) as a white amorphous solid. Additionally the debenzylated compound 47 ($21 \mathrm{mg}, 25 \%$) was isolated as a byproduct: ' H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(1 \mathrm{H}, \mathrm{br}$ s), 7.47 $(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}), 7.15(1 \mathrm{H}$, ddd, $J=6.9,6.9,1.6 \mathrm{~Hz}), 7.10(1 \mathrm{H}$, ddd, $J=6.9,6.9,1.6 \mathrm{~Hz}), 5.24$ $(1 \mathrm{H}, \mathrm{qt}, J=6.7,1.8 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{dd}, J=8.4,4.8 \mathrm{~Hz}), 3.78-3.70$ $(1 \mathrm{H}, \mathrm{m}), 3.65-3.60(1 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=10.5,9.3 \mathrm{~Hz}), 2.92(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $2.90(1 \mathrm{H}, \mathrm{dd}, J=16.2,2.7 \mathrm{~Hz}), 2.50(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 2.12-2.22$ ($1 \mathrm{H}, \mathrm{m}$), 1.82-1.77 ($2 \mathrm{H}, \mathrm{m}$), $1.64(3 \mathrm{H}, \mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}$); EIMS (m / e) $293\left(\mathrm{M}^{+}\right), 276,263,169$ (base); HRMS (m / e) calcd for $\mathrm{C}_{19}-$ $\mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}-\mathrm{H}\right) 293.1655$, found 293.1662.
(+)-Koumidine (50). Anhydrous ammonia (10 mL) was condensed into a round-bottomed flask, cooled to $-30^{\circ} \mathrm{C}$, and equipped with a dry-ice condenser. The (Z)-diol 46 ($27 \mathrm{mg}, 0.068 \mathrm{mmol}$) was added as a solution in THF (2 mL), followed by sodium metal ($6.5 \mathrm{mg}, 0.28$ mmol). The intensely blue solution was stirred for 1 h , and then anhydrous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{mg})$ was added. The cooling bath and condenser were removed, and the majority of the ammonia was allowed to evaporate. The reaction was partitioned between water $(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Chromatography on a $0.5-\mathrm{mm}$ preparative silica gel plate ($35 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ eluant) gave (+)-koumidine 50 (19 $\mathrm{mg}, 95 \%$ yield). Thin-layer chromatographic comparison of synthetic $(+)$-koumidine with natural $(-)$-koumidine (silica gel, petroleum ether, PhH, EtOAc, $\left.\mathrm{Et}_{2} \mathrm{NH}, 25: 10: 10: 4\right)$ gave an identical $R_{f}:[\alpha]_{\mathrm{D}}{ }^{24}+11.1^{\circ}$ (c $0.360, \mathrm{MeOH}$), IR $\left(\mathrm{CHCl}_{3}\right) 3300-3150,1710,1620,1590,1560,1450$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.86(1 \mathrm{H}, \mathrm{s}), 7.35(1 \mathrm{H}, \mathrm{dt}$, $J=7.7,0.9 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{dt}, J=8.0,0.9 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{ddd}, J=$ $8.1,8.1,1.1 \mathrm{~Hz}), 6.92(1 \mathrm{H}$, ddd, $J=7.8,7.8,1.1 \mathrm{~Hz}), 5.26-5.21(1 \mathrm{H}$, m), $3.99(1 \mathrm{H}, \mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}), 3.62(1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}), 3.51$ ($1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}), 3.37(1 \mathrm{H}, \mathrm{dd}, J=10.7,5.6 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}$, $J=10.6,6.6 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{t}, J=9.4 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=15.6$, $1.0 \mathrm{~Hz}), 2.69(1 \mathrm{H}, \mathrm{dd}, J=15.3,5.8 \mathrm{~Hz}), 2.35(1 \mathrm{H}, \mathrm{dd}, J=6.0,3.3$ $\mathrm{Hz}), 2.07-2.00(1 \mathrm{H}, \mathrm{m}), 1.75-1.70(1 \mathrm{H}, \mathrm{m}), 1.64(1 \mathrm{H}, \mathrm{dt}, J=12.9$, 3.5 Hz), $1.54(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (500 MHz , DMSO- d_{6}) $\delta 143.39,138.49,135.99,125.98,120.10,118.07,117.51,112.15,110.89$, 104.46, 58.96, 53.54, 51.96, 48.98, 42.65, 33.57, 28.41, 22.27, 12.18; EIMS (m / e) $294\left(\mathrm{M}^{+}\right), 293,231,181,169,168,131,119,69$ (base) HRMS (m / e) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} 294.1712$, found 294.1710.
\boldsymbol{N}-Carbomethoxytaberpsychine (51) and (+)-Taberpsychine (4). A solution of the above E hydrogenolysis product 49 ($32.4 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF (2.5 mL) was treated, at room temperature, with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (1.0 mL) followed by addition of methyl chloroformate ($17.6 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$). The reaction mixture was vigorously stirred for 4 h and then filtered to remove the white precipitate which had formed. The filtrate was concentrated and chromatographed on a $0.5-\mathrm{mm}$ silica gel plate ($\mathrm{Et}_{2} \mathrm{O}$ eluant) to provide the carbamate 51 ($20.0 \mathrm{mg}, 52 \%$ yield) which was used directly in the next step.

The carbamate 51 ($18.6 \mathrm{mg}, 0.052 \mathrm{mmol}$) was dissolved in dry THF (2 mL) and treated with a solution of lithium aluminum hydride in THF $(212 \mu \mathrm{~L}$ of 1 M solution, 0.212 mmol). The reactants were warmed to reflux temperature for 18 h and then cooled. Water (10 mL) was added, and the resulting mixture was extracted with EtOAc (10 mL). The organic phase was washed with brine (10 mL) and dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Pu rification was effected by using preparative thin-layer chromatography (0.25 mm , silica gel plate) eluted twice with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}$, $90: 8: 2)$ to give (+)-taberpsychine (4) ($10.8 \mathrm{mg}, 67 \%$) as a white amorphous solid in 35% overall yield from compound 49. Thin-layer chromatographic comparison of synthetic (+)-taberpsychine with natural $(-)$-taberpsychine (silica gel, $\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}, 90: 8: 2$) gave an identical $R_{f}:[\alpha]_{\mathrm{D}}{ }^{24}+296^{\circ}(c 0.110, \mathrm{MeOH}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3480$, $3050-2850,1605,1470,1350 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $11.0(1 \mathrm{H}, \mathrm{brs}), 7.67(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $7.15(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 5.34(1 \mathrm{H}, \mathrm{q}, J=$ $1.0 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{dd}, J=11.0,9.8 \mathrm{~Hz})$, $3.51(1 \mathrm{H}, \mathrm{br}$ s), $3.45(3 \mathrm{H}, \mathrm{s}), 3.27(3 \mathrm{H}, \mathrm{s}), 3.26(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz})$, $3.16-3.06(2 \mathrm{H}, \mathrm{m}), 2.96(1 \mathrm{H}, \mathrm{d}, J=14.2 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{t}, J=1.7$ $\mathrm{Hz}), 2.57-2.45(1 \mathrm{H}, \mathrm{m}), 1.98(1 \mathrm{H} . \mathrm{ddd}, J=14.0,9.7,1.4 \mathrm{~Hz}), 1.72$ $(2 \mathrm{H}, \mathrm{dd}, J=5.8,1.9 \mathrm{~Hz})$; EIMS $(m / e) 308\left(\mathrm{M}^{+}\right), 293,281,243,231$,
$219,181,169,131,118,100,87$ (base); HRMS, m / e calcd for $\mathrm{C}_{20^{-}}$ $\mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O} 308.1887$, found 308.1883 .
(+)-18-Hydroxy- \boldsymbol{N}-carbomethoxytaberpsychine (52). A solution of the (E)-diol $47(260 \mathrm{mg}, 0.84 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was treated, under anhydrous conditions, with methyl chloroformate ($150 \mu \mathrm{~L}, 1.85 \mathrm{mmol}$) at room temperature for 5 h . The reaction was neutralized with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ and then partitioned between EtOAc (100 mL) and water $(50 \mathrm{~mL})$. The organic layer was washed with brine $(50 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Purification was effected by using preparative thin-layer chromatography ($1.0-\mathrm{mm}$, silica gel plate eluted with $10 \% \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) to give $52(112 \mathrm{mg}, 36 \%)$ along with recovered starting material (159 mg , 61%). The yield based on starting material reacted was 93% : $[\alpha]_{D}{ }^{24}$ $+25.1^{\circ}\left(c 0.490\right.$, DMF) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29$ and 8.26 (1 H , two br s), $7.63(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.33-7.10(3 \mathrm{H}, \mathrm{m}), 5.64(1$ $\mathrm{H}, \mathrm{m}), 5.16(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 4.60-3.78(5 \mathrm{H}, \mathrm{m}), 3.77$ and $3.75(3$ H, two s), $3.60-3.20(4 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}$, $\mathrm{m})$. Signals are doubled due to carbamate resonance: EIMS $(m / e) 368$ $\left(\mathrm{M}^{+}\right), 337,293,268$ (base), 231, 220, 206, 193; HRMS m / e calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} 368.1737$, found 368.1737 .

18-Hydroxytaberpsychine (53). The N-carbomethoxy derivative 52 prepared above ($20.2 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in dry THF (4 mL) and treated with lithium aluminum hydride solution (1 M in THF, 400 $\mu \mathrm{L}, 0.40 \mathrm{mmol}$). The reaction was heated to reflux temperature for 3 h and then cooled to room temperature. Water ($50 \mu \mathrm{~L}$) was added, followed by $15 \% \mathrm{NaOH}$ solution ($50 \mu \mathrm{~L}$), and then additional water (150 $\mu \mathrm{L}$). The resulting suspension was filtered, and the filtrate was chromatographed on a $0.5-\mathrm{mm}$ silica gel plate eluted with $35 \% \mathrm{MeOH} / \mathrm{Et}-$ OAc to provide $53(12.5 \mathrm{mg}, 78 \%$ yield): IR $3480(\mathrm{br} \mathrm{s}), 3300,1590$ cm^{-1}, 'H NMR (360 MHz, DMSO-d $\left.)^{\prime}\right) \delta 8.41(1 \mathrm{H}, \mathrm{s}), 7.65(1 \mathrm{H}, \mathrm{d}, J$ $=7.6 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.06$ $(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, J=9.4$ $\mathrm{Hz}), 4.68(1 \mathrm{H}, \mathrm{br}$ s), 4.19-4.16(1 H, m), 4.03-3.99 (1 H, m), $3.84(1$ $\mathrm{H}, \mathrm{t}, J=10.8 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 3.26-3.23(2 \mathrm{H}, \mathrm{m})$, $3.11-3.05(1 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{d}, J=14.4 \mathrm{~Hz}), 2.59(3 \mathrm{H}, \mathrm{s}), 1.98(1$ $\mathrm{H}, \mathrm{dd}, J=9.7,13.7 \mathrm{~Hz}), 1.85-1.83(1 \mathrm{H}, \mathrm{m})$; EIMS $(m / e) 324\left(\mathrm{M}^{+}\right)$, 306 (base), 293, 263, 223, HR MS m / e calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} 324.1839$, found 324.1831 .
Z-Isomer of 18-Hydroxytaberpsychine (55). The (Z)-diol 48 (60 mg , 0.194 mmol), prepared above, was treated with methyl chloroformate (53 $\mu \mathrm{L}, 0.450 \mathrm{mmol}$) in THF (10 mL), under anhydrous conditions. The reaction was stirred at room temperature for 16 h . Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (1 mL) was added, and the mixture was partitioned between EtOAc (50 mL) and water $(20 \mathrm{~mL})$. The organic layer was washed with brine $(20 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography on a $0.5-\mathrm{mm}$ silica gel plate gave the desired N-carbomethoxy compound 54 ($31 \mathrm{mg}, 43 \%$) along with recovered starting material ($15 \mathrm{mg}, 25 \%$) and some starting material which had been carbomethoxylated on the indole nitrogen (12 $\mathrm{mg}, 17 \%$).

The N-carbomethoxy derivative 54 ($30 \mathrm{mg}, 0.082 \mathrm{mmol}$) was dissolved in dry THF (10 mL) and treated with a solution of lithium aluminum hydride in THF ($1 \mathrm{M}, 410 \mu \mathrm{~L}, 0.41 \mathrm{mmol}$). The reaction mixture was heated to reflux temperature for 3 h . The cooled solution was then hydrolyzed with water $(50 \mu \mathrm{~L}), 15 \% \mathrm{NaOH}$ solution ($50 \mu \mathrm{~L}$), followed by additional water $(150 \mu \mathrm{~L})$. The resulting suspension was filtered, and the filtrate chromatographed on a $0.5-\mathrm{mm}$ silica gel plate eluted with 35% $\mathrm{MeOH} / \mathrm{EtOAc}$ to give $\mathbf{5 5}$ ($20.0 \mathrm{mg}, 76 \%$ yield). The overall yield for the two steps from 48 was 33% : IR $\left(\mathrm{CHCl}_{3}\right) 3480$ (indole $\mathrm{N}-\mathrm{H}$), $3050-2850,1605,1470-1420,1350,1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.32$ $(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.17(2 \mathrm{H}, \mathrm{qd}, J=6.3,1.5 \mathrm{~Hz}), 5.56(1 \mathrm{H}, \mathrm{t}, J$ $=7.3 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{dd}, J=12.7,7.3 \mathrm{~Hz})$, $3.99(1 \mathrm{H}, \mathrm{dd}, J=12.9,6.3 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=11.9,9.4 \mathrm{~Hz}), 3.36$ ($2 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}$), $3.32-3.22(2 \mathrm{H}, \mathrm{m}), 3.17-3.13(1 \mathrm{H}, \mathrm{m}), 2.88(1$ $\mathrm{H}, \mathrm{ddd}, J=16.8,7.6,2.8 \mathrm{~Hz}), 2.58(3 \mathrm{H}, \mathrm{s}), 2.56-2.45(1 \mathrm{H}, \mathrm{m}), 2.14$ $(1 \mathrm{H}, \mathrm{dd}, J=13.6,9.8 \mathrm{~Hz}), 1.26(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; ElMS $(m / e) 324\left(\mathrm{M}^{+}\right)$, 306, 293 (base), 263, 220, 205.194. 168, 156, 138, 130, 120, 107; HRMS m / e calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ 324.1839, found 324.1820.
(+)-Koumine (2). Diethyl azodicarboxylate ($8.5 \mu \mathrm{~L}, 0.053 \mathrm{mmol}$), triphenylphosphine ($13.4 \mathrm{mg}, 0.053 \mathrm{mmol}$), and a catalytic amount of imidazole (2 mg) were dissolved in dry THF (7 mL). At room temperature, compound 55 ($17.0 \mathrm{mg}, 0.053 \mathrm{mmol}$) was added followed by sodium hydride ($2.5 \mathrm{mg}, 0.106 \mathrm{mmol}$). The reaction mixture was heated to reflux temperature for 3 h and then cooled to room temperature. The reaction was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$, and the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Chromatography on a $0.25-\mathrm{mm}$ silica gel plate ($60 \% \mathrm{MeOH} / \mathrm{EtOAc}$ eluant) gave (+)-koumine (2) ($6.5 \mathrm{mg}, 40 \%$) along with recovered starting material ($7.4 \mathrm{mg}, 43 \%$). The yield based on starting material reacted was $\mathbf{7 2 \%}$. Alternatively the E olefinic isomer 53 could also be converted to $(+)$-koumine (2) in 34% yield by using the identical procedure, except
the conversion was much slower (20 h) and other unidentified products were formed. TLC comparison with an authentic sample of $(-)$-koumine showed an identical $R_{f} ;[\alpha]_{\mathrm{D}}{ }^{24}+218^{\circ}(c 0.200, \mathrm{EtOH})$; IR $\left(\mathrm{CHCl}_{3}\right)$ $3050-2850,1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(1 \mathrm{H}, \mathrm{d}, J$ $=7.6 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{td}, J=7.6,1.2 \mathrm{~Hz})$, $7.27(1 \mathrm{H}, \mathrm{td}, J=7.4,1.1 \mathrm{~Hz}), 5.04(1 \mathrm{H}$, ddd, $J=3.6,2.4,1.1 \mathrm{~Hz})$, $4.85(1 \mathrm{H}, \mathrm{dd}, J=17.5,1.2 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{dd}, J=11.2,1.2 \mathrm{~Hz}), 4.70$ ($1 \mathrm{H}, \mathrm{dd}, J=17.5,11.2 \mathrm{~Hz}$), $4.28(1 \mathrm{H}, \mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}), 3.64(1$ $\mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{d}, J=11.4$ Hz), $2.84-2.81(2 \mathrm{H}, \mathrm{m}), 2.63(3 \mathrm{H}, \mathrm{s}), 2.63(1 \mathrm{H}, \mathrm{dt}, J=14.7,3.8 \mathrm{~Hz})$, $2.42(1 \mathrm{H}, \mathrm{dt}, J=14.3,1.9 \mathrm{~Hz}), 2.38(1 \mathrm{H}, \mathrm{dd}, J=14.3,3.3 \mathrm{~Hz}), 2.36$ (brd, $J=11.7 \mathrm{~Hz}$), $1.90(1 \mathrm{H}, \mathrm{dt}, J=14.7,2.1 \mathrm{~Hz}$); EIMS $(m / e) 306$
(M^{+}, base), 293, 281, 243, 231, 219, 193, 181, 169, 163, 192, 151, 143 , 131, 119, 113, 100, 93, 69; HRMS m / e calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} 306.1734$, found 306.1734 .

Acknowledgment. The National Institutes of Health (GM 32718) are thanked for their financial support of this research. B.M. thanks the NIH for a post-doctoral fellowship. G.A.C. thanks General Electric for a graduate student fellowship. Dr. John C. Huffman, Molecular Structure Center, Indiana University, Bloomington, IN 47415 is thanked for the X-ray structure determination of $(-)-37$ and $(+)-43$.

Synthesis of N-(Phenylsulfonyl)-CI, N-((tert-Butyloxy)carbonyl)-CI, CI-CDPI ${ }_{1}$, and CI-CDPI ${ }_{2}$: CC-1065 Functional Analogues Incorporating the Parent 1,2,7,7a-Tetrahydrocycloprop [1,2-c]indol-4-one ${ }^{\dagger}$ (CI) Left-Hand Subunit

Dale L. Boger, ${ }^{\text {*, Ia }}$ Ronald J. Wysocki, Jr., and Takayoshi Ishizaki ${ }^{\text {1b }}$
Contribution from the Department of Chemistry. Purdue University. West Lafayette. Indiana 47907. Received January 11. 1990

Abstract

Full details of the synthesis of N-(phenylsulfonyl)- and N-((tert-butyloxy)carbonyl)-1,2,7,7a-tetrahydrocyclo-prop[1,2-c]indol-4-one [N-(phenylsulfonyl)-CI (9) and N-BOC-CI (10)] constituting stable derivatives of the parent cyclopropylcyclohexadienone ring system of the CC-1065 left-hand subunit are described. The resolution of an immediate CI synthetic precursor, (+)- and (-)-17b, and the incorporation of $(\pm)-,(+)-$, and $(-)-17 \mathrm{~b}$ into the synthesis of racemic and optically active $\mathrm{Cl}-\mathrm{CDPI}_{1}$ (7) and $\mathrm{Cl}-\mathrm{CDPI}_{2}(8)$ are detailed.

(+)-CC-1065 (1, NSC-298223), an antitumor-antibiotic isolated from cultures of Streptomyces zelensis, ${ }^{2}$ possesses exceptionally potent in vitro cytotoxic activity, broad spectrum antimicrobial activity, and confirmed in vivo antitumor activity. In a series of extensive investigations, the site and mechanism of the $(+)$-CC- 1065 antitumor activity have been related to its irreversible, covalent alkylation of sequence-selective B-DNA minor groove sites $\left[5^{\prime}-\mathrm{d}(\mathrm{A} / \mathrm{GNTTA})-3^{\prime}\right.$ and $5^{\prime}-\mathrm{d}($ AAAAA $\left.)-3^{\prime}\right]$ that has been demonstrated to proceed by 3^{\prime}-adenine $N-3$ alkylation of the electrophilic spiro[2.5]octa-4,7-dien-6-one present in the left-hand segment (CPI) of (+)-CC-1065. ${ }^{3}$ In contrast to conclusions drawn from early efforts, ${ }^{2-4}$ recent investigations have suggested that the sequence-selective DNA binding properties as well as the intrinsic antitumor activity of $(+)$-CC- 1065 may be embodied in the CPI left-hand segment albeit with substantially reduced potency (ca. $10000 \times$). ${ }^{5}$ However, the additional observations of the distinct and indistinguishable cytotoxic potency of the enantiomeric pairs of agents, (+)-CC-1065 (1)/ent-(-)-CC-1065 (2) ${ }^{6}$ and (+)-CPI-CDPI ${ }_{2}$ (3)/(-)-CPI-CDPI ${ }_{2}$ (4), ${ }^{7,8}$ the contrasting observation of the lack of potent cytotoxic activity exhibited by simplified ${ }^{4}$ and aborted ${ }^{9}$ agents bearing the enantiomeric CPI left-hand subunit, the demonstrated A-T rich noncovalent DNA binding selectivity of simplified agents including CDPI_{3} methyl ester, ${ }^{10}$ and the recent results of direct comparative footprinting studies of a series of structurally related agent ${ }^{5,9}$ have suggested that the CC-1065 central and right-hand segments may simply potentiate ${ }^{5}$ and/or alter ${ }^{9}$ the DNA binding properties of the class of agents bearing the intact CPI left-hand subunit. Consequently, the definition of the structural and functional features of the

[^7]Scheme I

CC-1065 CPI left-hand subunit that contribute to its sequenceselective B-DNA minor groove binding properties, cytotoxic ac-

[^8]
[^0]: (6) Zhujin, L.; Qianshong, Y. Youii Huaxu 1986, $l, 36$. Buchi, G.; Manning, R. E.; Monti, S. A. J. Am. Chem. Soc. 1964, 86, 4631.
 (7) Chou, T. Q. Chinese J. Physiol. 1931, 5, 345; Chem. Abstr. 1932, 26, 806.

[^1]: (8) Shi-Chen, L.; Porter-Smith, F.; Stuart, G. A. Chinese Medicinal Herbs, Georgetown Press: San Francisco, CA, 1973. Duke, J. A.; Ayensu, E. S. Medicinal Plants of China; Reference Publications Inc.: Algonae, MI, 1985; p 411. See also ref 4.
 (9) Taberpsychine (4) was isolated from Tabernaemontana psychotrifolia H. B. K.; Biemann, K.; Spiteller, R. J. Am. Chem. Soc. 1962, 84, 4578. Its structure was reported in 1969 under the name of anhydrovobasindiol, and it was partially synthesized from vobasine. Dugan, J. J.; Hesse, M.; Renner, U.; Schmid, H. Helv. Chim. Acta 1969, 52, 701. Burnell, R. H.; Medina, J. D. Can. J. Chem. 1971, 49, 307.
 (10) Koumidine 6 was first isolated from Chinese gelsemium (G. elegans): Jin, H. L.; Xu, R. S. Acta Chim. Sinica 1982, 40, 112. The geometry of the ethylidene group was recently corrected by Cordell. Schum, Y.; Cordell, G. A. Phytochemistry 1987, 24, 2875.
 (11) Sakai, S.; Yamanaka, E.; Kitajima, M.; Yokota, M.; Aimi, N.; Wongseripatana, S.; Ponglux, D. Tetrahedron Lett. 1986, 27, 4585.
 (12) For synthetic approaches to the koumine-type alkaloids see: Liu, C.; Sun, S.; Yu, Q. J. Org. Chem. 1983, 48, 44. Liu, Z.; Xu, F. Tetrahedron Lett. 1989, 30.3457.

[^2]: (13) Lounasmaa, M.; Koskinen, A. Planta Medica 1982, 44, 120.
 (14) Synthesis of ajmaline: van Tamelen, E. E.; Shamma, M.; Burgstahler, A. W.; Wolinsky, J.; Tamm, R.; Aldrich, P. E. J. Am. Chem. Soc. 1958, 80, 5006. Masamune, S.; Ang, S. K.; Egli, C.; Nakatsuka, N.; Sakhar, S. K.; Yasunari, Y. J. Am. Chem. Soc. 1967, 89, 2506.
 (15) Yoneda, N. Chem. Pharm. Bull. 1965, 13, 622 and 1231. Hobson, J. D.; Raines, J.; Whiteoak, R. J. J. Chem. Soc. 1963, 3495 . Cloudsdale, I. S.; Kluge, A. F.; McClure, N. L. J. Org. Chem. 1982, 47, 919. References to the 6,10 -imino- 5 H -cyclooct $[b]$ indole ring system.
 (16) Zhang, L.-L.; Cook, J. M. Heterocycles 1988, 27, 2795. Sverens, D.; Sandrin, J.; Ungemach, F.; Mokry, P.; Wu, G. S.; Yamanaka, E.; Hutchins, L.; Dipierro, M.; Cook, J. M. J. Org. Chem. 1979, 44, 535. Trudell, M. L.; Cook, J. M. J. Am. Chem. Soc. 1989, III, 7504,

[^3]: (17) Yamada, S.; Shioiri, T.; Itaya, T.; Hara, T.; Matsueda, R. Chem Pharm. Bull. 1965, 13,88
 (18) Greenstein, J. P.; Winitz, M. Chemistry of the Amino Acids; Wiley: New York, 1961; Vol. 2, p 926.
 (19) Zhang, L. H.; Cook, J. M. Heterocycles 1988, 27, 1357. See also ref 16.
 (20) Shimizu, M., Ishikawa, M.; Komoda, Y.; Nakajima, T.; Yamaguchi K.; Sakai, S. Chem. Pharm. Bull. 1984, 32, 1313.
 (21) Bailey, P. D.; Hollinshead, S. P. Heterocycles 1987, 26, 389.

[^4]: (22) Pirkle, W. H.; Burlingame, T. G.; Beare, S. D. Tetrahedron Lett. 1968, 3, 5849 .
 (23) Pirkle, W. H.: Sikkenga, D. L.; Pavlin, M. S. J. Org. Chem. 1977, 42, 384.
 (24) Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. Practical Organic Chemistry, 4th ed.; Vogel, A. I., Ed.; Longmans: New York, 1978; p 437.
 (25) ElAmin, B.; Anantharamaiah, G. M.; Royer, G. P.; Means, G. E. J. Org. Chem. 1979, 44, 3442.

[^5]: (26) March, J. Advanced Organic Chemistry, 3rd ed.; Wiley: New York, 1985; p 316.
 (27) Quesada, M. L.; Kim, D.; Ahn, S. K.; Jeong, N. S.; Hwang, Y.; Kim, M. Y.; Kim, J. W. Heterocycles 1987, 25, 283.
 (28) Boyer, J.: Corriu, R. J. P.; Perz. R.: Reye, C. J. Organomet. Chem. 1980, 184, 157.
 (29) Carpino, L. A.; Sau, A. C. J. Chem. Soc., Chem. Commun. 1979, 514. (30) Kelly, D. R.; Roberts, S. M.; Newton, R. F. Synth. Commun. 1979, 9, 295.
 (31) Seebach, D.; Beck, A. K.; Mukhopadhyay, T.; Thomas, E. Helv. Chim. Acta 1982, 65, 1101.
 (32) Metcalf, B. W.; Burkhart, J. T.; Jund, K. Tetrahedron Lett. 1980, 21 , 35.

[^6]: (37) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611. Schrock, R. R. J. Am. Chem. Soc. 1976, $98,5399$.
 (38) Cannizzo, L. F.; Grubbs, R. H. J. Org. Chem. 1985, 50, 2386.
 (39) Mitsunubo, O. Synthesis 1981, 1.
 (40) For a comprehensive review on the $\mathrm{S}_{\mathrm{N}} \mathbf{2}^{\prime}$ reaction see: Magid, R. M. Tetrahedron 1980, 36, 1901.

[^7]: ${ }^{7}$ The numbering system used for the parent Cl is not that given in the Ring Systems Handbook. For consistency with related work, the numbering sequence follows that used for CPI in the Ring Systems Handbook.

[^8]: (1) (a) National Institutes of Health research career development award recipient, 1983-1988 (CA 01134). Alfred P. Sloan Foundation research fellow, 1985-1989. (b) On sabbatical from Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan.
 (2) (a) Chidester, C. G.; Krueger, W. C.; Mizsak, S. A.; Duchamp, D. J.; Martin, D. G. J. Am. Chem. Soc. 1981, 103, 7629 . (b) Martin, D. G.; Biles, C.; Gerpheide, S. A.; Hanka, L. J.; Krueger, W. C.; McGovren, J. P.; Mizsak, S. A.; Neil, G. L.; Stewart, J. C.; Visser, J. J. Antibiot. 1981, 34, 1119. (3) Reviews: (a) Reynolds, V. L.; McGovren, J. P.; Hurley, L. H. J. Antibiot. 1986, 39, 319. Hurley, L. H.; Needham-VanDevanter, D. R. Acc. Chem. Res. 1986, 19, 230. (b) Coleman, R. S.; Boger, D. L. Studies in Natural Products Chemistry: Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1989; Vol. 3, pp 301-383. (c) Rawal, V. H.; Jones, R. J.; Cava, M. P. Heterocycles 1987, 25, 701.
 (4) (a) Warpehoski, M. A.; Gebhard, I.; Kelly, R. C.; Krueger, W. C.; Li, L. H.; McGovren, J. P.; Prairie, M. D.; Wicnienski, N.; Wierenga, W. J. Med. Chem. 1988, 31, 590 . (b) Wierenga, W.; Bhuyan, B. K.; Kelly, R. C.; Krueger, W. C.; Li, L. H.; McGovren, J. P.; Swenson, D. H.; Warpehoski, M. A. Adv. Enzyme Regul. 1986, 25, 141.
 (5) Hurley, L. H.; Lee, C.-S.; McGovren, J. P.; Warpehoski, M. A.; Mitchell, M. A.; Kelly, R. C.; Aristoff, P. A. Biochemistry 1988, $27,3886$.
 (6) Kelly, R. C.; Gebhard, I.; Wicnienski, N.; Aristoff, P. A.; Johnson, P.
 D.; Martin, D. G. J. Am. Chem. Soc. 1987, 109, 6837.
 (7) (a) Boger, D. L.; Coleman, R. S. J. Org. Chem. 1988, 53, 695. (b) Boger, D. L.; Coleman, R. S. J. Am. Chem. Soc. 1988, IIO, 4796. (c) Boger, D. L.; Coleman, R. S. J. Am. Chem. Soc. 1988, 1I0, 1321.

